Let $ q $ be an odd prime power. Let $ F_1(x) = x^{d_1} $ and $ F_2(x) = x^{d_2} $ be power mappings over $ \mathrm{GF}(q^2) $, where $ d_1 = q-1 $ and $ d_2 = d_1+\frac{q^2-1}{2} = \frac{(q-1)(q+3)}{2} $. In this paper, we study the boomerang uniformity of $ F_1 $ and $ F_2 $ via their differential properties. It is shown that the boomerang uniformity of $ F_i $ ($ i = 1,2 $) is 2 with some conditions on $ q $.
Citation: |
[1] |
E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosystems, J. Cryptology, 4 (1991), 3-72.
doi: 10.1007/BF00630563.![]() ![]() ![]() |
[2] |
C. Blondeau, A. Canteaut and P. Charpin, Differential properties of power functions, Int. J. Inf. Coding Theory, 1 (2010), 149-170.
doi: 10.1504/IJICOT.2010.032132.![]() ![]() ![]() |
[3] |
C. Blondeau, A. Canteaut and P. Charpin, Differential properties of ${x\mapsto x^{2^{t}-1}}$, IEEE Trans. Inform. Theory, 57 (2011), 8127-8137.
doi: 10.1109/TIT.2011.2169129.![]() ![]() ![]() |
[4] |
C. Boura and A. Canteaut, On the boomerang uniformity of cryptographic sboxes, IACR Trans. Symmetric Cryptology, 2018 (2018), 290–310.
doi: 10.13154/tosc.v2018.i3.290-310.![]() ![]() |
[5] |
K. Browning, J. Dillon, M. McQuistan and J. Wolfe, An APN permutation in dimension six, Finite Fields: Theory and Applications, Contemp. Math. Amer. Math. Soc., 518 (2010), 33–42.
doi: 10.1090/conm/518/10194.![]() ![]() ![]() |
[6] |
L. Budaghyan and T. Helleseth, New perfect nonlinear multinomials over $F_{p^2k}$ for any odd prime $p$, Sequences and Their Applications—SETA 2008, Lecture Notes in Comput. Sci., 5203 (2008), 403–414.
doi: 10.1007/978-3-540-85912-3_35.![]() ![]() ![]() |
[7] |
M. Calderini and I. Villa, On the boomerang uniformity of some permutation polynomials, Cryptogr. Commun., 12 (2020), 1161-1178.
doi: 10.1007/s12095-020-00439-x.![]() ![]() ![]() |
[8] |
S. Choi, S. Hong, J. No and H. Chung, Differential spectrum of some power functions in odd prime characteristic, Finite Fields Appl., 21 (2013), 11-29.
doi: 10.1016/j.ffa.2013.01.002.![]() ![]() ![]() |
[9] |
C. Cid, T. Huang, T. Peyrin, Y. Sasaki and L. Song, Boomerang connectivity table: A new cryptanalysis tool, Advances in Cryptology—EUROCRYPT 2018, 10821 (2018), 683–714.
doi: 10.1007/978-3-319-78375-8_22.![]() ![]() ![]() |
[10] |
R. Coulter and R. Matthews, Planar functions and planes of Lenz-Barlotti class II, Des. Codes Cryptogr., 10 (1997), 167-184.
doi: 10.1023/A:1008292303803.![]() ![]() ![]() |
[11] |
C. Ding and J. Yuan, A family of skew Hadamard difference sets, J. Combin. Theory Ser. A, 113 (2006), 1526-1535.
doi: 10.1016/j.jcta.2005.10.006.![]() ![]() ![]() |
[12] |
H. Dobbertin, Almost perfect nonlinear power functions on GF($2^n$): The Welch case, IEEE Trans. Inform. Theory, 45 (1999), 1271-1275.
doi: 10.1109/18.761283.![]() ![]() ![]() |
[13] |
H. Dobbertin, Almost perfect nonlinear power functions on $\rm GF(2^n)$: The Niho case, Inform. and Comput., 151 (1999), 57-72.
doi: 10.1006/inco.1998.2764.![]() ![]() ![]() |
[14] |
H. Dobbertin, T. Helleseth, P. Kumar and H. Martinsen, Ternary m-sequences with three-valued cross-correlation function :New decimations of Welch and Niho type, IEEE Trans. Inform. Theory, 47 (2001), 1473-1481.
doi: 10.1109/18.923728.![]() ![]() ![]() |
[15] |
H. Dobbertin, D. Mills, E. Müller, A. Pott and W. Willems, APN functions in odd characteristic, Discrete Math., 267 (2003), 95-112.
doi: 10.1016/S0012-365X(02)00606-4.![]() ![]() ![]() |
[16] |
S. Hasan, M. Pal and P. Stǎnicǎ, Boomerang uniformity of a class of power maps, Des. Codes Cryptogr., 89 (2021), 2627-2636.
doi: 10.1007/s10623-021-00944-x.![]() ![]() ![]() |
[17] |
T. Helleseth, C. Rong and D. Sandberg, New families of almost perfect nonlinear power mappings, IEEE Trans. Inform. Theory, 45 (1999), 474-485.
doi: 10.1109/18.748997.![]() ![]() ![]() |
[18] |
T. Helleseth and D. Sandberg, Some power mappings with low differential uniformity, Appl. Algebra Engrg. Comm. Comput., 8 (1997), 363-370.
doi: 10.1007/s002000050073.![]() ![]() ![]() |
[19] |
S. Jiang, K. Li, Y. Li and L. Qu, Differential and boomerang spectrums of some power permutations, Cryptogr. Commun., 14 (2022), 371-393.
doi: 10.1007/s12095-021-00530-x.![]() ![]() ![]() |
[20] |
K. Li, L. Qu, B. Sun and C. Li, New results about the boomerang uniformity of permutation polynomials, IEEE Trans. Inform. Theory, 65 (2019), 7542-7553.
doi: 10.1109/TIT.2019.2918531.![]() ![]() ![]() |
[21] |
N. Li, Y. Wu, X. Zeng and X. Tang, On the differential spectrum of a class of power functions over finite fields, arXiv: 2012.04316.
![]() |
[22] |
Z. Li and H. Yan, Differential spectra of a class of power permutations with niho exponents, Adv. Math. Commun., 2021.
doi: 10.3934/amc.2021060.![]() ![]() |
[23] |
S. Mesnager, B. Mandal and M. Msahli, Survey on recent trends towards generalized differential and boomerang uniformities, Cryptogr. Commun., 14 (2022), 691-735.
doi: 10.1007/s12095-021-00551-6.![]() ![]() ![]() |
[24] |
G. Ness and T. Helleseth, A new family of ternary almost perfect nonlinear mappings, IEEE Trans. Inform. Theory, 53 (2007), 2581-2586.
doi: 10.1109/TIT.2007.899508.![]() ![]() ![]() |
[25] |
K. Nyberg, Differentially uniform mappings for cryptography, Advances in Cryptology—EUROCRYPT '93 (Lofthus, 1993), Lecture Notes in Comput. Sci., 765 (1994), 55–64.
doi: 10.1007/3-540-48285-7_6.![]() ![]() ![]() |
[26] |
D. Wagner, The boomerang attack, Fast Software Encryption, Lecture Notes in Comput. Sci., 1636 (1999), 156-170.
doi: 10.1007/3-540-48519-8_12.![]() ![]() |
[27] |
Y. Xia, X. Zhang, C. Li and T. Helleseth, The differential spectrum of a ternary power mapping, Finite Fields Appl., 64 (2020), 101660, 16 pp.
doi: 10.1016/j.ffa.2020.101660.![]() ![]() ![]() |
[28] |
M. Xiong and H. Yan, A note on the differential spectrum of a 4-uniform power function, Finite Fields Appl., 48 (2017), 117-125.
doi: 10.1016/j.ffa.2017.07.008.![]() ![]() ![]() |
[29] |
M. Xiong, H. Yan and P. Yuan, On a conjecture of differentially 8-uniform power function, Des. Codes Cryptogr., 86 (2018), 1601-1621.
doi: 10.1007/s10623-017-0416-7.![]() ![]() ![]() |
[30] |
H. Yan and C. Li, Differential spectra of a class of power permutations with characteristic 5, Des. Codes Cryptogr., 89 (2021), 1181-1191.
doi: 10.1007/s10623-021-00865-9.![]() ![]() ![]() |
[31] |
H. Yan, Y. Xia, C. Li, T. Helleseth, M. Xiong and J. Luo, The differential spectrum of the power mapping $x^{p^n-3}$, IEEE Trans. Inform. Theory.
![]() |
[32] |
H. Yan, Z. Zhou, J. Weng, J. Wen, T. Helleseth and Q. Wang, Differential spectrum of Kasami power permutations over odd characteristic finite fields, IEEE Trans. Inform. Theory, 65 (2019), 6819-6826.
doi: 10.1109/TIT.2019.2910070.![]() ![]() ![]() |
[33] |
Z. Zha and L. Hu, The boomerang uniformity of power permutations $x^{2^k-1}$ over $F_{2^n}$, Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA), (2019).
doi: 10.1109/IWSDA46143.2019.8966114.![]() ![]() |
[34] |
Z. Zha, G. Kyureghyan and X. Wang, Perfect nonlinear binomials and their semifields, Finite Fields Appl., 15 (2009), 125-133.
doi: 10.1016/j.ffa.2008.09.002.![]() ![]() ![]() |
[35] |
Z. Zha and X. Wang, Almost perfect nonlinear power functions in odd characteristic, IEEE Trans. Inform. Theory, 57 (2011), 4826-4832.
doi: 10.1109/TIT.2011.2145130.![]() ![]() ![]() |