BCH codes are a special subclass of cyclic codes and have many important applications in data storage and communication systems. In this paper, we investigate the structure of binary linear complementary dual (LCD) BCH codes with length $ n = \frac{{{2^m} + 1}}{3} $, where $ m \geq 7 $ is an odd integer. By exploring cyclotomic cosets modulo $ n $, we determine the dimension of LCD BCH codes for designed distance $ \delta $ in the range $ 2 \le \delta \le{2^{\frac{{m + 1}}{2}}} $. Furthermore, we compute the first five largest coset leaders modulo $ n $ and construct some binary LCD BCH codes. We also present two families of optimal binary linear codes from LCD BCH codes.
Citation: |
[1] | C. Carlet and S. Guilley, Complementary dual codes for countermeasures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131-150. doi: 10.3934/amc.2016.10.131. |
[2] | C. Carlet, S. Mesnager, C. Tang, Y. Qi and R. Pellikaan, Linear codes over $\mathbb{F}_q$ are equivalent to LCD codes for $q>3$, IEEE Trans. Inform. Theory, 64 (2018), 3010-3017. doi: 10.1109/TIT.2018.2789347. |
[3] | P. Charpin, Open problems on cyclic codes, In Handbook of Coding Theory, (eds. V. S. Pless and W. C. Huffman), Amsterdam, The Netherlands: Elsevier, 1 (1998), 963–1063. |
[4] | C. Ding, Parameters of several classes of BCH codes, IEEE Trans. Inform. Theory, 61 (2015), 5322-5330. doi: 10.1109/TIT.2015.2470251. |
[5] | C. Ding, X. Du and Z. Zhou, The Bose and minimum distance of a class of BCH codes, IEEE Trans. Inform. Theory, 61 (2015), 2351-2356. doi: 10.1109/TIT.2015.2409838. |
[6] | C. Ding, C. Fan and Z. Zhou, The dimension and minimum distance of two classes of primitive BCH codes, Finite Fields Appl., 45 (2017), 237-263. doi: 10.1016/j.ffa.2016.12.009. |
[7] | M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Accessed on 2022-5-22. Available from: http://www.codetables.de. |
[8] | X. Huang, Q. Yue, Y. Wu, X. Shi and J. Michel, Binary primitive LCD BCH codes, Des. Codes Cryptogr., 88 (2020), 2453-2473. doi: 10.1007/s10623-020-00795-y. |
[9] | W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003. doi: 10.1017/CBO9780511807077. |
[10] | C. Li, Hermitian LCD codes from cyclic codes, Des. Codes Cryptogr., 86 (2018), 2261-2278. |
[11] | C. Li, C. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inform. Theory, 63 (2017), 4344-4356. |
[12] | S. Li, C. Ding, M. Xiong and G. Ge, Narrow-sense BCH codes over $\text{GF}(q)$ with length $n = \frac{{{q^m} - 1}}{{q - 1}}$, IEEE Trans. Inform. Theory, 63 (2017), 7219-7236. doi: 10.1109/TIT.2017.2743687. |
[13] | S. Li, C. Li, C. Ding and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inform. Theory, 63 (2017), 5699-5717. |
[14] | H. Liu, C. Ding and C. Li, Dimensions of three types of BCH codes over $\text{GF}(q)$, Discrete Math., 340 (2017), 1910-1927. doi: 10.1016/j.disc.2017.04.001. |
[15] | K. Liu, W. Ren, F. Wang and J. Wang, A new class of distance-optimal binary cyclic codes and their duals, AAECC, 2021. doi: 10.1007/s00200-020-00478-0. |
[16] | Y. Liu, R. Li, Q. Fu, L. Lu and Y. Rao, Some binary BCH codes with length $n = {{2^m} + 1}$, Finite Fields Appl., 55 (2019), 109-133. doi: 10.1016/j.ffa.2018.09.005. |
[17] | F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[18] | J. L. Massey, Reversible codes, Inform. Control, 7 (1964), 369-380. |
[19] | J. L. Massey, Linear codes with complementary duals, Discrete Math., 106/107 (1992), 337-342. doi: 10.1016/0012-365X(92)90563-U. |
[20] | S. K. Muttoo and S. Lal, A reversible code over $\text{GF}(q)$, Kybernetika, 22 (1986), 85-91. |
[21] | B. Pang, S. Zhu and Z. Sun, On LCD negacyclic codes over finite fields, J. Syst. Sci. Complex., 31 (2018), 1065-1077. doi: 10.1007/s11424-017-6301-7. |
[22] | L. Wang, Z. Sun and S. Zhu, Hermitian dual-containing narrow-sense constacyclic BCH codes and quantum codes, Quantum Inf. Process., 18 (2019), Paper No. 323, 40 pp. doi: 10.1007/s11128-019-2440-1. |
[23] | P. Wu, C. Li and W. Peng, On some cyclic codes of length $\frac{{{q^2m} - 1}}{{q + 1}}$, Finite Fields Appl., 60 (2019), 101581, 28 pp. doi: 10.1016/j.ffa.2019.101581. |
[24] | H. Yan, H. Liu, C. Li and S. Yang, Parameters of LCD BCH codes with two lengths, Adv. Math. Commun., 12 (2018), 579-594. doi: 10.3934/amc.2018034. |
[25] | X. Yang and J. L. Massey, The necessary and sufficient condition for a cyclic code to have a complementary dual, Discrete Math., 126 (1994), 391-393. doi: 10.1016/0012-365X(94)90283-6. |
[26] | D. Yue and G. Feng, Minimum cyclotomic coset representatives and their applications to BCH codes and Goppa codes, IEEE Trans. Inform. Theory, 46 (2000), 2625-2628. doi: 10.1109/18.887870. |
[27] | D. Yue and Z. Hu, On the dimension and minimum distance of BCH codes over $\text{GF}(q)$, J. Electronics (China), 13 (1996), 216-221. |
[28] | Z. Zhou, X. Li, C. Tang and C. Ding, Binary LCD codes and self-orthogonal codes from a generic construction, IEEE Trans. Inform. Theory, 65 (2019), 16-27. doi: 10.1109/TIT.2018.2823704. |
[29] | H. Zhu, M. Shi, X. Wang and T. Helleseth, The $q$-ary antiprimitive BCH codes, IEEE Trans. Inform. Theory, 68 (2022), 1683-1695. doi: 10.1109/TIT.2021.3131810. |