\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Two new classes of Hermitian self-orthogonal non-GRS MDS codes and their applications

  • * Corresponding author: Gaojun Luo

    * Corresponding author: Gaojun Luo 

Dedicated to Professor Cunsheng Ding on his 60th Birthday

Nanyang Technological University Grant Number 04INS000047C230GRT01 supports the research carried out by G. Luo, M. F. Ezerman, and S. Ling. National Natural Science Foundation of China (Grant No. 11971175) partially supports S. Ling. National Natural Science Foundation of China (Grant No. 12171241) provides funding for X. Cao and G. Luo

Abstract / Introduction Full Text(HTML) Figure(0) / Table(2) Related Papers Cited by
  • Hermitian self-orthogonal codes form an essential ingredient in the construction of quantum stabilizer codes. In this paper, we present two new classes of Hermitian self-orthogonal MDS codes from twisted generalized Reed-Solomon codes. The constructed codes are monomially inequivalent to generalized Reed-Solomon codes. Two new classes of Hermitian LCD MDS codes can then be derived. Finally, based on the constructed Hermitian self-orthogonal MDS codes, we present two classes of quantum MDS codes with new parameters.

    Mathematics Subject Classification: Primary: 94B27, 81P73; Secondary: 14G50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Parameters of known quantum MDS codes of length $ s(q+1) $ or $ s(q-1) $. Here $ s $ can be a rational number as long as the code length remains an integer

    No. Length Distance Constraints Reference(s)
    $ 1 $ $ \frac{q^2-1}{2} $ $ 3\leq d\leq q $ $ q $ is odd [27]
    $ 2 $ $ \ell(q+1) $ $ 2\leq d\leq \frac{q+1}{2}+\ell $ $ \ell $ is odd and $ \ell\mid(q-1) $
    $ 3 $ $ 2\ell(q+1) $ $ 2\leq d\leq \frac{q+1}{2}+2\ell $ $ \ell $ is odd, $ q\equiv 1\pmod{4} $
    and $ \ell\mid(q-1) $
    $ 4 $ $ \frac{q^2-1}{r} $ $ 2\leq d\leq \frac{q+1}{2}+\frac{q+1}{2r}-1 $ $ r $ is odd [39]
    $ 5 $ $ \frac{q^2-1}{r} $ $ 2\leq d\leq \frac{q+1}{2}+\frac{q+1}{2}-1 $ $ r $ is even [27,39]
    $ 6 $ $ \frac{q^2-1}{r} $ $ 2\leq d\leq \frac{(q+1)(r+1)}{2r}-2\ell $ $ r\mid(q+1) $ and $ r\in\{3, 5, 7\} $ [9]
    $ 7 $ $ 2\ell(q+1) $ $ 2\leq d\leq 6\ell+1 $ $ 8\mid(q+1) $ and $ \ell\mid(q+1) $
    $ 8 $ $ 3(q-1) $ $ 2\leq d\leq \frac{q+5}{2} $ $ q $ is odd and $ 9\mid(q+1) $
    $ 9 $ $ \frac{r(q^2-1)}{2\ell+1} $ $ d\leq \frac{q(\ell+1)(2\ell+1)}{2r}-\frac{\ell}{2\ell+1} $ $ 1\leq r\leq 2\ell+1 $, $ \gcd(r, q)=1 $ [24]
    and $ q\equiv -1\pmod{2\ell+1} $
    $ 10 $ $ (2\ell+2) \left(\frac{q^2-1}{r}\right) $ $ 2\leq d\leq \frac{(q+1)(r+2\ell+3)}{2r}-1 $ $ 0\leq \ell\leq \frac{r-3}{2} $, $ r $ is odd [38]
    and $ q=rm-1, m>1 $
    $ 11 $ $ (2\ell+2) \left(\frac{q^2-1}{r}\right) $ $ 2\leq d\leq \frac{(q+1)(r+2\ell+2)}{2r}-1 $ $ 0\leq \ell\leq \frac{r-3}{2} $, $ r $ is even
    and $ q=rm-1, m>1 $
    $ 12 $ $ (\ell+1) \left(\frac{q^2-1}{r}\right) $ $ 2\leq d\leq \frac{(q+1)(\ell+1)}{r} $ $ 0\leq \ell\leq \frac{r-3}{2} $ and $ q=rm+1 $
    $ 13 $ $ \ell(q-1) $ $ 2\leq d\leq \left\lfloor\frac{\ell q-1}{q+1}\right\rfloor+1 $ $ 1\leq \ell\leq q $ [19]
    $ 14 $ $ \ell(q+1) $ $ 2\leq d\leq \ell $ $ 1\leq \ell\leq q-1 $
    $ 15 $ $ (2\ell+1) \left(\frac{q^2-1}{2r}\right) $ $ 2\leq d\leq (r+\ell) \left(\frac{q+1}{2r}\right)-1 $ $ 2r\mid(q+1) $ and $ 1\leq \ell\leq r-1 $ [12]
    $ 16 $ $ (t+1) \left(\frac{q+1}{r}\right) $ $ 4\leq d\leq\left\lfloor\frac{t(q+1)-r}{r(q+1)}\right\rfloor+1 $ $ r\mid(q+1) $ and $ r<t\leq q-2 $ Theorem 4.2
    $ 17 $ $ (t+1) \left(\frac{q-1}{h}\right) $ $ 4\leq d\leq\left\lfloor\frac{tq-h-1}{h(q+1)}\right\rfloor+1 $ $ h\mid(q-1) $, $ h+1\leq t\leq q-h $ Theorem 4.3
    and $ h\mid(q-h-t) $
     | Show Table
    DownLoad: CSV

    Table 2.  Parameters of known non-GRS MDS codes which are Hermitian linear complementary dual over $ {\mathbb F}_{q^2} $, with $ \upsilon_p(N) $ denoting the largest power of $ p $ that divides $ N $

    No. Length Dimension Constraints Reference
    $ 1 $ $ 2k $ $ k $ $ q $ is odd, $ {\mathbb F}_s $ is a subfield of $ {\mathbb F}_{q^2} $, $ k\mid(s-1) $, [40]
    and $ 2<k<(s-1)/2 $
    $ 2 $ $ k+3 $ $ k $ $ q $ is odd, $ k\mid(q-1) $, and $ \gcd(k+1, q)=1 $
    $ 3 $ $ 2k+2 $ $ k $ $ q $ is odd, $ k\mid(q-1) $, and there exists an odd
    prime $ p $ such that $ \upsilon_p(k)<\upsilon_p(q-1) $
    $ 4 $ $ (t+1) \frac{q+1}{r} $ $ k $ $ r \mid (q+1) $, $ 1< r< t \leq q-2 $, and $ 2< k \leq \left \lfloor\frac{t}{r} - \frac{1}{q+1}\right\rfloor $ Corollary 1
    $ 5 $ $ (t+1) \frac{q-1}{h} $ $ k $ $ h \mid \gcd(q-1, q-h-t) $, $ 2< h+1\leq t\leq q-h $, Corollary 2
    and $ 2< k\leq \left\lfloor\frac{t \, q-h-1}{h(q+1)}\right\rfloor $
     | Show Table
    DownLoad: CSV
  • [1] A. Ashikhmin and E. Knill, Nonbinary quantum stabilizer codes, IEEE Trans. Inform. Theory, 47 (2001), 3065-3072.  doi: 10.1109/18.959288.
    [2] S. Ball, Some constructions of quantum MDS codes, Des. Codes Cryptogr., 89 (2021), 811-821.  doi: 10.1007/s10623-021-00846-y.
    [3] P. BeelenS. Puchinger and J. Rosenkilde, Twisted Reed-Solomon codes, IEEE Int. Symp. Inform. Theory (ISIT), (2017), 336-340.  doi: 10.1109/ISIT.2017.8006545.
    [4] P. BeelenS. Puchinger and J. Rosenkilde, Twisted Reed Solomon codes, IEEE Trans. Inform. Theory, 68 (2022), 3047-3061.  doi: 10.1109/TIT.2022.3146254.
    [5] J. BringerC. CarletH. ChabanneS. Guilley and H. Maghrebi, Orthogonal direct sum masking, Information Security Theory and Practice: Securing the Internet of Things, (2014), 40-56.  doi: 10.1007/978-3-662-43826-8_4.
    [6] T. BrunI. Devetak and M.-H. Hsieh, Correcting quantum errors with entanglement, Science, 314 (2006), 436-439.  doi: 10.1126/science.1131563.
    [7] A. R. CalderbankE. M. RainsP. W. Shor and N. J. A. Sloane, Quantum error correction via codes over $GF(4)$, IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.  doi: 10.1109/18.681315.
    [8] C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131-150.  doi: 10.3934/amc.2016.10.131.
    [9] B. ChenS. Ling and G. Zhang, Application of constacyclic codes to quantum MDS codes, IEEE Trans. Inform. Theory, 61 (2015), 1474-1484.  doi: 10.1109/TIT.2015.2388576.
    [10] H. ChenR. CramerS. GoldwasserR. de Haan and V. Vaikuntanathan, Secure computation from random error correcting codes, Advances in Cryptology - EUROCRYPT 2007, Lecture Notes in Comput. Sci., Springer, Berlin, 4515 (2017), 291-310.  doi: 10.1007/978-3-540-72540-4_17.
    [11] W. Fang and F.-W. Fu, Two new classes of quantum MDS codes, Finite Fields Their Appl., 53 (2018), 85-98.  doi: 10.1016/j.ffa.2018.06.003.
    [12] W. Fang and F.-W. Fu, Some new constructions of quantum MDS codes, IEEE Trans. Inform. Theory, 65 (2019), 7840-7847.  doi: 10.1109/TIT.2019.2939114.
    [13] X. Fang and J. Luo, New quantum MDS codes over finite fields, Quantum Inform. Process., 19 (2020), Paper No. 16, 17 pp. doi: 10.1007/s11128-019-2506-0.
    [14] D. E. Gottesman, Stabilizer Codes and Quantum Error Correction, PhD thesis, California Institute of Technology, 1997, https://resolver.caltech.edu/CaltechETD:etd-07162004-113028.
    [15] M. Grassl, Algebraic Quantum Codes: New Challenges for Classical Coding Theory?, Carleton Finite Fields eSeminar, 2021, https://people.math.carleton.ca/finitefields/Files/MG_slides.pdf.
    [16] M. GrasslT. Beth and M. Roetteler, On optimal quantum codes, Int. J. Quantum Inform., 2 (2004), 55-64.  doi: 10.1142/S0219749904000079.
    [17] M. Grassl and M. Rötteler, Quantum MDS codes over small fields, 2015 IEEE Int. Symp. Inform. Theory (ISIT), (2015), 1104-1108.  doi: 10.1109/ISIT.2015.7282626.
    [18] G. GuoR. Li and L. Guo, On the construction of quantum MDS codes, Int. J. Theoretical Phys., 57 (2018), 3525-3539.  doi: 10.1007/s10773-018-3867-3.
    [19] G. Guo, R. Li and Y. Liu, Application of Hermitian self-orthogonal GRS codes to some quantum MDS codes, Finite Fields Their Appl., 76 (2021), 101901, 17 pp. doi: 10.1016/j.ffa.2021.101901.
    [20] X. HeL. Xu and H. Chen, New $q$-ary quantum MDS codes with distances bigger than $q/2$, Quantum Inform. Process., 15 (2016), 2745-2758.  doi: 10.1007/s11128-016-1311-2.
    [21] D. HuangQ. YueY. Niu and X. Li, MDS or NMDS self-dual codes from twisted generalized Reed-Solomon codes, Des. Codes. Cryptogr., 89 (2021), 2195-2209.  doi: 10.1007/s10623-021-00910-7.
    [22] F. Huber and M. Grassl, Quantum codes of maximal distance and highly entangled subspaces, Quantum, 4 (2020), 284.  doi: 10.22331/q-2020-06-18-284.
    [23] L. JinH. Kan and J. Wen, Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes, Des. Codes, Cryptogr., 84 (2016), 463-471.  doi: 10.1007/s10623-016-0281-9.
    [24] L. JinS. LingJ. Luo and C. Xing, Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes, IEEE Trans. Inform. Theory, 56 (2010), 4735-4740.  doi: 10.1109/TIT.2010.2054174.
    [25] L. Jin and C. Xing, A construction of new quantum MDS codes, IEEE Trans. Inform. Theory, 60 (2014), 2921-2925.  doi: 10.1109/TIT.2014.2299800.
    [26] X. Kai and S. Zhu, New quantum MDS codes from negacyclic codes, IEEE Trans. Inform. Theory, 59 (2013), 1193-1197.  doi: 10.1109/TIT.2012.2220519.
    [27] X. KaiS. Zhu and P. Li, Constacyclic codes and some new quantum MDS codes, IEEE Trans. Inform. Theory, 60 (2014), 2080-2086.  doi: 10.1109/TIT.2014.2308180.
    [28] A. KetkarA. KlappeneckerS. Kumar and P. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inform. Theory, 52 (2006), 4892-4914.  doi: 10.1109/TIT.2006.883612.
    [29] E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Phy. Rev. A, 55 (1997), 900-911.  doi: 10.1103/PhysRevA.55.900.
    [30] R. Li and Z. Xu, Construction of $[[n, n-4, 3]]_q$ quantum codes for odd prime power $q$, Phys. Rev. A, 82 (2010), 052316, 4 pp. doi: 10.1103/PhysRevA.82.052316.
    [31] Z. Li, L.-J. Xing and X.-M. Wang, Quantum generalized Reed-Solomon codes: Unified framework for quantum maximum-distance-separable codes, Phys. Rev. A, 77 (2008), 012308, 4 pp. doi: 10.1103/PhysRevA.77.012308.
    [32] S. Ling and C. Xing, Coding Theory: A First Course, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511755279.
    [33] H. Liu and S. Liu, Construction of MDS twisted Reed-Solomon codes and LCD MDS codes, Des. Codes, Cryptogr., 89 (2021), 2051-2065.  doi: 10.1007/s10623-021-00899-z.
    [34] E. M. Rains, Nonbinary quantum codes, IEEE Trans. Inform. Theory, 45 (1999), 1827-1832.  doi: 10.1109/18.782103.
    [35] R. M. Roth and A. Lempel, A construction of non-Reed-Solomon type MDS codes, IEEE Trans. Inform. Theory, 35 (1989), 655-657.  doi: 10.1109/18.30988.
    [36] M. RottelerM. Grassl and T. Beth, On quantum MDS codes, 2004 IEEE Int. Symp. Inform. Theory (ISIT), (2004), 356-356.  doi: 10.1109/ISIT.2004.1365393.
    [37] X. ShiQ. Yue and Y. Wu, New quantum MDS codes with large minimum distance and short length from generalized Reed-Solomon codes, Discrete Math., 342 (2019), 1989-2001.  doi: 10.1016/j.disc.2019.03.019.
    [38] X. ShiQ. Yue and X. Zhu, Construction of some new quantum MDS codes, Finite Fields Their Appl., 46 (2017), 347-362.  doi: 10.1016/j.ffa.2017.04.002.
    [39] L. Wang and S. Zhu, New quantum MDS codes derived from constacyclic codes, Quantum Inform. Process., 14 (2015), 881-889.  doi: 10.1007/s11128-014-0903-y.
    [40] Y. WuJ. Y. Hyun and Y. Lee, New LCD MDS codes of non-Reed-Solomon type, IEEE Trans. Inform. Theory, 67 (2021), 5069-5078.  doi: 10.1109/TIT.2021.3086818.
    [41] G. Zhang and B. Chen, New quantum MDS codes, Int. J. Quantum Inform., 12 (2014), 1450019, 10 pp. doi: 10.1142/S0219749914500191.
    [42] T. Zhang and G. Ge, Quantum MDS codes with large minimum distance, Des. Codes Cryptogr., 83 (2016), 503-517.  doi: 10.1007/s10623-016-0245-0.
    [43] C. Zhu and Q. Liao, Self-dual twisted generalized Reed-Solomon codes, arXiv: 2111.11901.
    [44] C. Zhu and Q. Liao, Self-orthogonal generalized twisted Reed-Solomon codes, arXiv: 2201.02758.
  • 加载中

Tables(2)

SHARE

Article Metrics

HTML views(3005) PDF downloads(122) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return