[1]
|
A. Ashikhmin and E. Knill, Nonbinary quantum stabilizer codes, IEEE Trans. Inform. Theory, 47 (2001), 3065-3072.
doi: 10.1109/18.959288.
|
[2]
|
S. Ball, Some constructions of quantum MDS codes, Des. Codes Cryptogr., 89 (2021), 811-821.
doi: 10.1007/s10623-021-00846-y.
|
[3]
|
P. Beelen, S. Puchinger and J. Rosenkilde, Twisted Reed-Solomon codes, IEEE Int. Symp. Inform. Theory (ISIT), (2017), 336-340.
doi: 10.1109/ISIT.2017.8006545.
|
[4]
|
P. Beelen, S. Puchinger and J. Rosenkilde, Twisted Reed Solomon codes, IEEE Trans. Inform. Theory, 68 (2022), 3047-3061.
doi: 10.1109/TIT.2022.3146254.
|
[5]
|
J. Bringer, C. Carlet, H. Chabanne, S. Guilley and H. Maghrebi, Orthogonal direct sum masking, Information Security Theory and Practice: Securing the Internet of Things, (2014), 40-56.
doi: 10.1007/978-3-662-43826-8_4.
|
[6]
|
T. Brun, I. Devetak and M.-H. Hsieh, Correcting quantum errors with entanglement, Science, 314 (2006), 436-439.
doi: 10.1126/science.1131563.
|
[7]
|
A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over $GF(4)$, IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
doi: 10.1109/18.681315.
|
[8]
|
C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131-150.
doi: 10.3934/amc.2016.10.131.
|
[9]
|
B. Chen, S. Ling and G. Zhang, Application of constacyclic codes to quantum MDS codes, IEEE Trans. Inform. Theory, 61 (2015), 1474-1484.
doi: 10.1109/TIT.2015.2388576.
|
[10]
|
H. Chen, R. Cramer, S. Goldwasser, R. de Haan and V. Vaikuntanathan, Secure computation from random error correcting codes, Advances in Cryptology - EUROCRYPT 2007, Lecture Notes in Comput. Sci., Springer, Berlin, 4515 (2017), 291-310.
doi: 10.1007/978-3-540-72540-4_17.
|
[11]
|
W. Fang and F.-W. Fu, Two new classes of quantum MDS codes, Finite Fields Their Appl., 53 (2018), 85-98.
doi: 10.1016/j.ffa.2018.06.003.
|
[12]
|
W. Fang and F.-W. Fu, Some new constructions of quantum MDS codes, IEEE Trans. Inform. Theory, 65 (2019), 7840-7847.
doi: 10.1109/TIT.2019.2939114.
|
[13]
|
X. Fang and J. Luo, New quantum MDS codes over finite fields, Quantum Inform. Process., 19 (2020), Paper No. 16, 17 pp.
doi: 10.1007/s11128-019-2506-0.
|
[14]
|
D. E. Gottesman, Stabilizer Codes and Quantum Error Correction, PhD thesis, California Institute of Technology, 1997, https://resolver.caltech.edu/CaltechETD:etd-07162004-113028.
|
[15]
|
M. Grassl, Algebraic Quantum Codes: New Challenges for Classical Coding Theory?, Carleton Finite Fields eSeminar, 2021, https://people.math.carleton.ca/finitefields/Files/MG_slides.pdf.
|
[16]
|
M. Grassl, T. Beth and M. Roetteler, On optimal quantum codes, Int. J. Quantum Inform., 2 (2004), 55-64.
doi: 10.1142/S0219749904000079.
|
[17]
|
M. Grassl and M. Rötteler, Quantum MDS codes over small fields, 2015 IEEE Int. Symp. Inform. Theory (ISIT), (2015), 1104-1108.
doi: 10.1109/ISIT.2015.7282626.
|
[18]
|
G. Guo, R. Li and L. Guo, On the construction of quantum MDS codes, Int. J. Theoretical Phys., 57 (2018), 3525-3539.
doi: 10.1007/s10773-018-3867-3.
|
[19]
|
G. Guo, R. Li and Y. Liu, Application of Hermitian self-orthogonal GRS codes to some quantum MDS codes, Finite Fields Their Appl., 76 (2021), 101901, 17 pp.
doi: 10.1016/j.ffa.2021.101901.
|
[20]
|
X. He, L. Xu and H. Chen, New $q$-ary quantum MDS codes with distances bigger than $q/2$, Quantum Inform. Process., 15 (2016), 2745-2758.
doi: 10.1007/s11128-016-1311-2.
|
[21]
|
D. Huang, Q. Yue, Y. Niu and X. Li, MDS or NMDS self-dual codes from twisted generalized Reed-Solomon codes, Des. Codes. Cryptogr., 89 (2021), 2195-2209.
doi: 10.1007/s10623-021-00910-7.
|
[22]
|
F. Huber and M. Grassl, Quantum codes of maximal distance and highly entangled subspaces, Quantum, 4 (2020), 284.
doi: 10.22331/q-2020-06-18-284.
|
[23]
|
L. Jin, H. Kan and J. Wen, Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes, Des. Codes, Cryptogr., 84 (2016), 463-471.
doi: 10.1007/s10623-016-0281-9.
|
[24]
|
L. Jin, S. Ling, J. Luo and C. Xing, Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes, IEEE Trans. Inform. Theory, 56 (2010), 4735-4740.
doi: 10.1109/TIT.2010.2054174.
|
[25]
|
L. Jin and C. Xing, A construction of new quantum MDS codes, IEEE Trans. Inform. Theory, 60 (2014), 2921-2925.
doi: 10.1109/TIT.2014.2299800.
|
[26]
|
X. Kai and S. Zhu, New quantum MDS codes from negacyclic codes, IEEE Trans. Inform. Theory, 59 (2013), 1193-1197.
doi: 10.1109/TIT.2012.2220519.
|
[27]
|
X. Kai, S. Zhu and P. Li, Constacyclic codes and some new quantum MDS codes, IEEE Trans. Inform. Theory, 60 (2014), 2080-2086.
doi: 10.1109/TIT.2014.2308180.
|
[28]
|
A. Ketkar, A. Klappenecker, S. Kumar and P. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inform. Theory, 52 (2006), 4892-4914.
doi: 10.1109/TIT.2006.883612.
|
[29]
|
E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Phy. Rev. A, 55 (1997), 900-911.
doi: 10.1103/PhysRevA.55.900.
|
[30]
|
R. Li and Z. Xu, Construction of $[[n, n-4, 3]]_q$ quantum codes for odd prime power $q$, Phys. Rev. A, 82 (2010), 052316, 4 pp.
doi: 10.1103/PhysRevA.82.052316.
|
[31]
|
Z. Li, L.-J. Xing and X.-M. Wang, Quantum generalized Reed-Solomon codes: Unified framework for quantum maximum-distance-separable codes, Phys. Rev. A, 77 (2008), 012308, 4 pp.
doi: 10.1103/PhysRevA.77.012308.
|
[32]
|
S. Ling and C. Xing, Coding Theory: A First Course, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511755279.
|
[33]
|
H. Liu and S. Liu, Construction of MDS twisted Reed-Solomon codes and LCD MDS codes, Des. Codes, Cryptogr., 89 (2021), 2051-2065.
doi: 10.1007/s10623-021-00899-z.
|
[34]
|
E. M. Rains, Nonbinary quantum codes, IEEE Trans. Inform. Theory, 45 (1999), 1827-1832.
doi: 10.1109/18.782103.
|
[35]
|
R. M. Roth and A. Lempel, A construction of non-Reed-Solomon type MDS codes, IEEE Trans. Inform. Theory, 35 (1989), 655-657.
doi: 10.1109/18.30988.
|
[36]
|
M. Rotteler, M. Grassl and T. Beth, On quantum MDS codes, 2004 IEEE Int. Symp. Inform. Theory (ISIT), (2004), 356-356.
doi: 10.1109/ISIT.2004.1365393.
|
[37]
|
X. Shi, Q. Yue and Y. Wu, New quantum MDS codes with large minimum distance and short length from generalized Reed-Solomon codes, Discrete Math., 342 (2019), 1989-2001.
doi: 10.1016/j.disc.2019.03.019.
|
[38]
|
X. Shi, Q. Yue and X. Zhu, Construction of some new quantum MDS codes, Finite Fields Their Appl., 46 (2017), 347-362.
doi: 10.1016/j.ffa.2017.04.002.
|
[39]
|
L. Wang and S. Zhu, New quantum MDS codes derived from constacyclic codes, Quantum Inform. Process., 14 (2015), 881-889.
doi: 10.1007/s11128-014-0903-y.
|
[40]
|
Y. Wu, J. Y. Hyun and Y. Lee, New LCD MDS codes of non-Reed-Solomon type, IEEE Trans. Inform. Theory, 67 (2021), 5069-5078.
doi: 10.1109/TIT.2021.3086818.
|
[41]
|
G. Zhang and B. Chen, New quantum MDS codes, Int. J. Quantum Inform., 12 (2014), 1450019, 10 pp.
doi: 10.1142/S0219749914500191.
|
[42]
|
T. Zhang and G. Ge, Quantum MDS codes with large minimum distance, Des. Codes Cryptogr., 83 (2016), 503-517.
doi: 10.1007/s10623-016-0245-0.
|
[43]
|
C. Zhu and Q. Liao, Self-dual twisted generalized Reed-Solomon codes, arXiv: 2111.11901.
|
[44]
|
C. Zhu and Q. Liao, Self-orthogonal generalized twisted Reed-Solomon codes, arXiv: 2201.02758.
|