BCH codes are an especially important kind of cyclic codes, which are extensively used in many domains such as communication and storage systems. Determining the dimensions of BCH codes is a challenging problem in coding theory. In this paper, we study BCH codes of length $ \frac{{{q^m} + 1}}{2} $, for odd $ m $ and $ m \equiv 2(\bmod\; {4}) $. The first few largest coset leaders of such BCH codes are obtained. On the basis of this, we determine their parameters and obtain a few optimal or almost optimal codes.
Citation: |
[1] | P. Charpin, Open problems on cyclic codes, Handbook of Coding Theory, North-Holland, 1 (1998), 963-1063. |
[2] | C. Ding, Parameters of several classes of BCH codes, IEEE Trans. Inf. Theory, 61 (2015), 5322-5330. doi: 10.1109/TIT.2015.2470251. |
[3] | C. Ding, C. Fan and Z. Zhou, The dimension and minimum distance of two classes of primitive BCH codes, Finite Fields Appl., 45 (2017), 237-263. doi: 10.1016/j.ffa.2016.12.009. |
[4] | D. Gorenstein and N. Zierler, A class of error-correcting codes in ${p^m}$ symbols, J. Soc. Ind. Appl. Math., 9 (1961), 207-214. doi: 10.1109/TIT.2017.2672961. |
[5] | A. Hocquenghem, Codes correcteurs d'erreurs, Chiffres, 2 (1959), 147-156. |
[6] | C. Li, C. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inf. Theory, 63 (2017), 344-4356. doi: 10.1109/TIT.2017.2672961. |
[7] | S. Li, C. Ding, M. Xiong and G. Ge, Narrow-sense BCH codes over ${\mathrm {GF}}(q) $ with length $ n = \frac {q^{m}-1}{q-1} $, IEEE Trans. Inf. Theory, 63 (2017), 7219-7236. doi: 10.1109/tit.2017.2743687. |
[8] | S. Li, C. Li, C. Ding and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inf. Theory, 63 (2017), 5699-5717. doi: 10.1109/tit.2017.2723363. |
[9] | X. Ling, S. Mesnager, Y. Qi and C. Tang, A class of narrow-sense BCH codes over $\mathbb {F} _q $ of length $\frac {q^ m-1}{2} $, Des. Codes Cryptogr., 88 (2020), 413-427. doi: 10.1007/s10623-019-00691-0. |
[10] | H. Liu, C. Ding and C. Li, Dimensions of three types of BCH codes over $GF(q)$, Discrete Math., 340 (2017), 1910-1927. doi: 10.1016/j.disc.2017.04.001. |
[11] | F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Amsterdam-New York-Oxford, 1977. |
[12] | L. Sok, M. Shi and P. Solé, Construction of optimal LCD codes over large finite fields, Finite Fields Appl., 50 (2018), 138-153. doi: 10.1016/j.ffa.2017.11.007. |
[13] | M. Shi, D. Huang, L. Sok and P. Solé, Double circulant LCD codes over $\mathbb{Z}_4$, Finite Fields Appl., 58 (2019), 133-144. doi: 10.1016/j.ffa.2019.04.001. |
[14] | M. Shi, F. Özbudak, X. Li and P. Solé, LCD codes from tridiagonal Toeplitz matrices, Finite Fields Appl., 75 (2021), 101892. doi: 10.1016/j.ffa.2021.101892. |
[15] | H. Yan, H. Liu, C. Li and S. Yang, Parameters of LCD BCH codes with two lengths, Adv. Math. Commun., 12 (2018), 579-594. |
[16] | X. Yang and J. L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math., 126 (1994), 391-393. doi: 10.1016/0012-365x(94)90283-6. |
[17] | H. Zhu, M. Shi, X. Wang and T. Helleseth, The $q$-ary antiprimitive BCH codes, IEEE Trans. Inf. Theory, 68 (2022), 1683-1695. doi: 10.1109/TIT.2021.3131810. |
[18] | S. Zhu, Z. Sun and X. Kai, A class of narrow-sense BCH codes, IEEE Trans. Inf. Theory, 65 (2019), 4699-4714. doi: 10.1109/tit.2019.2913389. |