\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Boundary controllability for a 1D degenerate parabolic equation with drift and a singular potential

  • *Corresponding author: Marcos López-García

    *Corresponding author: Marcos López-García

The second author was partially supported by DGAPA-UNAM [PAPIIT IN109522], and CONACYT-México [A1-S-17475]. The first author was supported by a grant from CONACyT-México

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We prove the null controllability of a one-dimensional degenerate parabolic equation with drift and a singular potential. We study the case when the potential arises at the left endpoint and a weighted Dirichlet boundary control is located at this point. We get a spectral decomposition of a suitable operator, defined in a weighted Sobolev space, involving Bessel functions and their zeros, then we use the moment method by Fattorini and Russell to obtain an upper estimate of the cost of controllability. We also obtain a lower estimate of the cost of controllability by using a representation theorem for analytic functions of exponential type.

    Mathematics Subject Classification: Primary: 35K65, 93B05; Secondary: 30E05, 93B60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, No. 55. U. S. Government Printing Office, Washington, D.C., 1964.
    [2] U. Biccari, Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential, Math. Control Relat. Fields, 9 (2019), 191-219.  doi: 10.3934/mcrf.2019011.
    [3] U. BiccariV. Hernández-Santamaría and J. Vancostenoble, Existence and cost of boundary controls for a degenerate/singular parabolic equation, Math. Control Relat. Fields, 12 (2022), 495-530.  doi: 10.3934/mcrf.2021032.
    [4] P. CannarsaP. Martinez and J. Vancostenoble, The cost of controlling weakly degenerate parabolic equations by boundary controls, Math. Control Relat. Fields, 7 (2017), 171-211.  doi: 10.3934/mcrf.2017006.
    [5] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998.
    [6] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 2. Functional and Variational Methods, Springer-Verlag, Berlin, 1988. doi: 10.1007/978-3-642-61566-5.
    [7] R. Du, Null controllability for a class of degenerate parabolic equations with the gradient terms, J. Evol. Equ., 19 (2019), 585-613.  doi: 10.1007/s00028-019-00487-8.
    [8] H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., 43 (1971), 272-292.  doi: 10.1007/BF00250466.
    [9] C. Flores and L. Teresa, Carleman estimates for degenerate parabolic equations with first order terms and applications, C. R. Math. Acad. Sci. Paris, 348 (2010), 391-396.  doi: 10.1016/j.crma.2010.01.007.
    [10] J. C. Flores and L. de Teresa, Null controllability of one-dimensional degenerate parabolic equations with first-order terms, Discrete and Continuous Dynamical Systems-B, 5 (2020), 3963-3981.  doi: 10.3934/dcdsb.2020136.
    [11] M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52 (2014), 2037-2054.  doi: 10.1137/120901374.
    [12] M. Gueye and P. Lissy, Singular optimal control of a 1-D parabolic-hyperbolic degenerate equation, ESAIM Control Optim. Calc. Var., 22 (2016), 1184-1203.  doi: 10.1051/cocv/2016036.
    [13] V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer Monogr. Math., Springer-Verlag, New York, 2005.
    [14] P. Koosis, The Logarithmic Integral Ⅰ & Ⅱ, Cambridge Studies in Advanced Mathematics, 12. Cambridge University Press, Cambridge, 1988 & Cambridge Studies in Advanced Mathematics, 21. Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511566196.
    [15] G. Tenenbaum and M. Tucsnak, New blow-up rates for fast controls of Schrodinger and heat equations, J. Differ. Equ., 243 (2007), 70-100.  doi: 10.1016/j.jde.2007.06.019.
    [16] G. N. WatsonA Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England, The Macmillan Company, New York, 1944. 
  • 加载中
SHARE

Article Metrics

HTML views(2205) PDF downloads(454) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return