Using the family of generalized Baskakov operators we propose a general method to construct positive linear operators preserving exponential functions. A conjecture concerning Voronovskaja type formula and some applications are presented.
Citation: |
[1] | T. Acar, A. Aral, D. Cárdenas-Morales and P. Garrancho, Szász-Mirakyan type operators which fix exponentials, Results Math, 72 (2017), 1393-1404. doi: 10.1007/s00025-017-0665-9. |
[2] | T. Acar, A. Aral and H. Gonska, On Szász-Mirakyan operators preserving $e^{2ax}$, $a>0$, Mediterr. J. Math., 14 (2017), Paper No. 6, 14 pp. doi: 10.1007/s00009-016-0804-7. |
[3] | T. Acar, A. Aral and I. Raşa, Positive linear operators preserving $\tau$ and $\tau^{2}$, Constr. Math. Anal., 2 (2019), 98-102. |
[4] | A. M. Acu, A. Aral and I. Raşa, New properties of operators preserving exponentials, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 117 (2023), Paper No. 1. doi: 10.1007/s13398-022-01332-3. |
[5] | A. M. Acu, A. Aral and I. Raşa, Generalized bernstein kantorovich operators, Carpathian J. Math., 38 (2022), 1-12. doi: 10.37193/cjm.2022.01.01. |
[6] | A. M. Acu and V. Gupta, On Baskakov-Szász-Mirakyan-type operators preserving exponential type functions, Positivity, 22 (2018), 919-929. doi: 10.1007/s11117-018-0553-x. |
[7] | A. M. Acu, M. Heilmann, I. Rasa and A. Seserman, Poisson approximation to the binomial distribution: Extensions to the convergence of positive operators (submitted), |
[8] | A. M. Acu, A. I. Măduţa and I. Raşa, Voronovskaya type results and operators fixing two functions, Math. Model. Anal., 26 (2021), 395-410. doi: 10.3846/mma.2021.13228. |
[9] | A. M. Acu and G. Tachev, Yet another new variant of Szász-Mirakyan operator, Symmetry, 13 (2021), 2018. |
[10] | P. N. Agrawal and J. K. Singh, Better approximation by a Durrmeyer variant of $\alpha$-Baskakov operators, Mathematical Foundations of Computing, 2022. doi: 10.3934/mfc.2021040. |
[11] | A. Aral, D. Cárdenas-Morales and P. Garrancho, Bernstein-type operators that reproduce exponential functions, J. Math. Inequal, 12 (2018), 861-872. doi: 10.7153/jmi-2018-12-64. |
[12] | A. Aral, D. Inoan and I. Raşa, Approximation properties of Szász-Mirakyan operators preserving exponential functions, Positivity, 23 (2019), 233-246. doi: 10.1007/s11117-018-0604-3. |
[13] | A. Aral, D. Inoan and I. Raşa, On the generalized Szász-Mirakyan operators, Results. Math., 65 (2014), 441-452. doi: 10.1007/s00025-013-0356-0. |
[14] | A. Aral, M. Limmam and F. Ozsarac, Approximation properties of Szász-Mirakyan Kantorovich type operators, Math Meth Appl Sci., 42 (2019), 5233-5240. doi: 10.1002/mma.5280. |
[15] | A. Aral, D. Otrocol and I. Raşa, On approximation by some Bernstein-Kantorovich exponential-type polynomials, Period. Math. Hungar., 79 (2019), 236-254. doi: 10.1007/s10998-019-00284-3. |
[16] | M. Bodur, Ö. G. Yllmaz and A. Aral, Approximation by Baskakov-Szász-Stancu operators preserving exponential functions, Constr. Math. Anal., 1 (2018), 1-8. doi: 10.33205/cma.450708. |
[17] | J. Bustamante, Approximation of functions and mihesan operators, Mathematical Foundations of Computing, 2022. doi: 10.3934/mfc.2022033. |
[18] | D. Cárdenas-Morales, P. Garrancho and I. Raşa, Bernstein-type operators which preserve polynomials, Comput. Math. Appl., 62 (2011), 158-163. doi: 10.1016/j.camwa.2011.04.063. |
[19] | H. Gonska, P. Piţul and I. Raşa, General King-type operators, Result. Math., 53 (2009), 279-286. doi: 10.1007/s00025-008-0338-9. |
[20] | V. Gupta, A. Aral and F. Özsaraç, On semi-exponential Gauss-Weierstrass operators, Anal. Math. Phys., 12 (2022), Paper No. 111, 16 pp. doi: 10.1007/s13324-022-00723-4. |
[21] | V. Gupta and A. J. López-Moreno, Phillips operators preserving arbitrary exponential functions $e^{at}$, $e^{bt}$, Filomat, 32 (2018), 5071-5082. doi: 10.2298/fil1814071g. |
[22] | V. Gupta and G. Tachev, A modified Post Widder operators preserving $e^{Ax}$, Stud. Univ. Babeş-Bolyai Math., 67 (2022), 599-606. |
[23] | F. Ozsarac and T. Acar, Reconstruction of Baskakov operators preserving some exponential functions, Math. Meth. Appl. Sci., 42 (2019), 5124-5132. doi: 10.1002/mma.5228. |
[24] | F. Ozsarac, V. Gupta and A. Aral, Approximation by some Baskakov-Kantorovich exponential-type operators, Bull. Iranian Math. Soc., 48 (2022), 227-241. doi: 10.1007/s41980-020-00513-3. |
[25] | G. Tachev and V. Gupta, A note on the differences of two positive linear operators, Constr. Math. Anal., 2 (2019), 1-7. doi: 10.33205/cma.469114. |
[26] | G. Uysal, On a special class of modified integral operators preserving some exponential functions, Mathematical Foundations of Computing, 2022. doi: 10.3934/mfc.2021044. |