\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Mathematical analysis of a hybrid model: Impacts of individual behaviors on the spreading of an epidemic

  • * Corresponding author: Cristiana J. Silva

    * Corresponding author: Cristiana J. Silva 
Abstract / Introduction Full Text(HTML) Figure(7) / Table(3) Related Papers Cited by
  • In this paper, we investigate the well-posedness and dynamics of a class of hybrid models, obtained by coupling a system of ordinary differential equations and an agent-based model. These hybrid models intend to integrate the microscopic dynamics of individual behaviors into the macroscopic evolution of various population dynamics models, and can be applied to a great number of complex problems arising in economics, sociology, geography and epidemiology. Here, in particular, we apply our general framework to the current COVID-19 pandemic. We establish, at a theoretical level, sufficient conditions which lead to particular solutions exhibiting irregular oscillations and interpret those particular solutions as pandemic waves. We perform numerical simulations of a set of relevant scenarios which show how the microscopic processes impact the macroscopic dynamics.

    Mathematics Subject Classification: Primary: 34F05, 34A38; Secondary: 91C99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Timeline of the hybrid model $ \text{(AHP)} $. At $ t = t_0 $, the initial condition $ ( \mathfrak{IC}) $ gives $ (X_0, \lambda_0) \in E \times J $. On each interval $ [t_s, t_{s+1}] $, the macroscopic part $ ( \mathfrak{M}_s) $ is determined by an ordinary differential equation. At each time step $ t = t_s $, the microscopic part $ ( \mathfrak{m}_s) $ follows from a discrete mapping which is derived from an agent-based model

    Figure 2.  Social network generated over a finite set of agents, by running a Newman–Watts-Strogatz graph generation algorithm: each vertex represents an agent, and each edge models a social connection between two agents. Different colors correspond to the different epidemic sub-classes of the population. In such a social network, each agent can observe the types and the behaviors of its neighbors and can make decisions with respect to its observations

    Figure 3.  Basic reproduction number $ R_0(p, u) $ of the $ SAIRP $ model (3), with $ 0.25 \leq p \leq 0.675 $ and $ 0 \leq u \leq 0.4 $

    Figure 4.  Local stability condition of the endemic equilibrium $ \Sigma_+ $ is satisfied for $ R_0(p, u) > 1 $. Considering the parameter values (Pfixed) and varying $ 0.25 \leq p \leq 0.675 $, $ 0 \leq u \leq 0.4 $

    Figure 5.  Model $ SAIRP $ with parameter values from Tables 1-2 (colored continuous line) fitting the real data (discontinuous line) of active infected individuals with COVID-19 in Portugal, from March 2, 2020 until April 15, 2021

    Figure 6.  A geographical network with 5 regions and the main connections. Individual displacements from one region to another occur along these connections

    Figure 7.  Numerical simulations of the hybrid model (8)-(13), for four relevant scenarios. Each sub-figure shows the number $ I_i(t) $ of infected individuals in each region $ D_i $ ($ 1 \leq i \leq 5 $) of the geographical network depicted in Figure 6

    Table 1.  Piecewise parameter values $ \beta_i $, $ p_i $, $ m_i $, for $ i = 1, \ldots, 9 $, of the $ SAIRP $ model

    Time sub-interval $ \beta_i $ $ p_i $ $ f_i $
    (transmission rate) (transfer from $ S $ to $ P $) (transfer from $ P $ to $ S $)
    $ [0, 73] $ $ \beta_1 = 1.502 $ $ p_1 = 0.675 $ $ f_1 = 0.066 $
    $ [73, 90] $ $ \beta_2 = 0.600 $ $ p_2 = 0.650 $ $ f_2 = 0.090 $
    $ [90, 130] $ $ \beta_3 = 1.240 $ $ p_3 = 0.580 $ $ f_3 = 0.180 $
    $ [130, 163] $ $ \beta_4 = 0.936 $ $ p_4 = 0.610 $ $ f_4 = 0.160 $
    $ [163, 200] $ $ \beta_5 = 1.531 $ $ p_5 = 0.580 $ $ f_5 = 0.170 $
    $ [200, 253] $ $ \beta_6 = 0.886 $ $ p_6 = 0.290 $ $ f_6 = 0.140 $
    $ [253, 304] $ $ \beta_7 = 0.250 $ $ p_7 = 0.370 $ $ f_7 = 0.379 $
    $ [304, 329] $ $ \beta_8 = 0.793 $ $ p_8 = 0.370 $ $ f_8 = 0.090 $
    $ [329, 410] $ $ \beta_9 = 0.100 $ $ p_9 = 0.550 $ $ f_9 = 0.090 $
     | Show Table
    DownLoad: CSV

    Table 2.  Constant parameter values and initial conditions for $ SAIRP $ model, see [34]

    Parameter Description Value
    $ \Lambda $ Recruitment rate $ \frac{0.19\%\times N_0}{365} $
    $ \mu $ Natural death rate $ \frac{1}{81 \times 365} $
    $ \theta $ Modification parameter $ 1 $
    $ v $ Transfer rate from $ A $ to $ I $ $ 1 $
    $ q $ Fraction of $ A $ individuals confirmed as infected $ 0.15 $
    $ \phi $ Transfer rate from $ S $ to $ P $ $ \frac{1}{12} $
    $ \delta $ Transfer rate from $ I $ to $ R $ $ \frac{1}{27} $
    $ w $ Transfer rate from $ P $ to $ S $ $ \frac{1}{45} $
    Class of individuals Initial condition value
    Susceptible $ S(0) = 10295894 $
    Asymptomatic $ A(0) = \tfrac{2}{0.15} $
    Active infected $ I(0) = 2 $
    Removed $ R(0) = 0 $
    Protected $ P(0) = 0 $
     | Show Table
    DownLoad: CSV

    Table 3.  Values of the parameters for the numerical simulations of the hybrid model (8)

    Parameter Region 1 Region 2 Region 3 Region 4 Region 5
    $ \beta $ $ 2 $ $ 2 $ $ 2 $ $ 0.1 $ $ 0.1 $
    $ p $ $ 0.0 $ $ 0.0 $ $ 0.0 $ $ 0.5 $ $ 0.5 $
    $ \theta $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $
    $ \Lambda $ $ 1000 $ $ 1000 $ $ 1000 $ $ 1 $ $ 1 $
    $ \phi $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $
    $ \omega $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $
    $ \mu $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $
    $ \nu $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $
    $ \delta $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $
    $ u $ $ 0.2 $ $ 0.2 $ $ 0.2 $ $ 0.2 $ $ 0.2 $
    $ R_0 $ $ 1.3269 $ $ 1.3269 $ $ 1.3269 $ $ 0.0375 $ $ 0.0375 $
    Initial condition Region 1 Region 2 Region 3 Region 4 Region 5
    $ S_0 $ $ 297.24 $ $ 140.39 $ $ 358.32 $ $ 151.39 $ $ 443.33 $
    $ A_0 $ $ 13.33 $ $ 6.66 $ $ 6.66 $ $ 13.33 $ $ 6.66 $
    $ I_0 $ $ 2 $ $ 1 $ $ 1 $ $ 2 $ $ 1 $
    $ R_0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
    $ P_0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $
     | Show Table
    DownLoad: CSV
  • [1] M. Ajelli, B. Gonçalves, D. Balcan, V. Colizza, H. Hu, J. J. Ramasco, S. Merler and A. Vespignani, Comparing wide-scale computational modeling Approaches to epidemic: Agent-based versus structured MetaPopulation models, BMC Infectious Diseases, 10 (2010), Article number: 190. doi: 10.1186/1471-2334-10-190.
    [2] L. J. S. Allen, An Introduction to Stochastic Processes with Applications to Biology, Second edition. CRC Press, Boca Raton, FL, 2011.
    [3] L. J. S. Allen and E. J. Allen, A comparison of three different stochastic population models with regard to persistence time, Theoretical Population Biology, 64 (2003), 439-449.  doi: 10.1016/S0040-5809(03)00104-7.
    [4] A. BanosN. CorsonB. GaudouV. Laperrière and S. R. Coyrehourcq, The importance of being hybrid for spatial epidemic models: a multi-scale approach, Systems, 3 (2015), 309-329.  doi: 10.3390/systems3040309.
    [5] A. Banos, C. Lang and M. Nicolas, Agent-based Spatial Simulation with NetLogo, Elsevier, 2017. doi: 10.1016/C2015-0-01299-0.
    [6] G. Cantin, Nonidentical coupled networks with a geographical model for human behaviors during catastrophic events, International Journal of Bifurcation and Chaos, 27 (2017), 1750213, 21pp. doi: 10.1142/S0218127417502133.
    [7] G. Cantin and C. J. Silva, Influence of the topology on the dynamics of a complex network of HIV/AIDS epidemic models, AIMS Mathematics, 4 (2019), 1145-1169.  doi: 10.3934/math.2019.4.1145.
    [8] Centers for Disease Control and Prevention, Coronavirus Disease 2019 (COVID-19), 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html.
    [9] V. Colizza and A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations, Journal of theoretical biology, 251 (2008), 450-467.  doi: 10.1016/j.jtbi.2007.11.028.
    [10] E. DelisleC. RousseauB. BrocheI. Leparc-Goffart and ot hers, Chikungunya outbreak in Montpellier, France, September to October 2014, Eurosurveillance, 20 (2015), 21108.  doi: 10.2807/1560-7917.ES2015.20.17.21108.
    [11] Direção Geral da Saúde – COVID-19, Ponto de Situação Atual em Portugal, 2021. Available from: https://covid19.min-saude.pt/ponto-de-situacao-atual-em-portugal/.
    [12] M. Dolfinand M. Lachowicz, Modeling opinion dynamics: how the network enhances consensus, Networks & Heterogeneous Media, 10 (2015), 877-896.  doi: 10.3934/nhm.2015.10.877.
    [13] A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 459-482.  doi: 10.1017/S0308210507000455.
    [14] J. M. Epstein, J. Parker, D. Cummings and R. A. Hammond, Coupled contagion dynamics of fear and disease: Mathematical and computational explorations, PLoS One, 3 (2008), e3955. doi: 10.1371/journal.pone.0003955.
    [15] European Centre for Disease Prevention and Control, Guidelines for the Implementation of Non-Pharmaceutical Interventions Against COVID-19, 2020. Available from: https://www.ecdc.europa.eu/en/publications-data/covid-19-guidelines-non-pharmaceutical-interventions.
    [16] L. FahseC. Wissel and V. Grimm, Reconciling classical and individual-based approaches in theoretical population ecology: A protocol for extracting population parameters from individual-based models, The American Naturalist, 152 (1998), 832-856.  doi: 10.1086/286212.
    [17] S. Galam, Sociophysics: A Physicist's Modeling of Psycho-political Phenomena, Understanding Complex Systems. Springer, New York, 2012. doi: 10.1007/978-1-4614-2032-3.
    [18] S. GrauwinE. BertinR. Lemoy and P. Jensen, Competition between collective and individual dynamics, Proceedings of the National Academy of Sciences, 106 (2009), 20622-20626.  doi: 10.1073/pnas.0906263106.
    [19] J. K. Hale, Ordinary Differential Equations, Krieger Publishing Company (second edition), 1980.
    [20] D. Helbing, Quantitative Sociodynamics: Stochastic Methods and Models of Social Interaction Processes, Springer-Verlag Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-11546-2.
    [21] A. J. Heppenstall, A. T. Crooks, L. M. See and M. Batty, Agent-based Models of Geographical Systems, Springer Science & Business Media, 2011. doi: 10.1007/978-90-481-8927-4.
    [22] H. W. Hethcote, Three basic epidemiological models, in Applied Mathematical Ecology, Springer, 18 (1989), 119–144. doi: 10.1007/978-3-642-61317-3_5.
    [23] H. W. Hethcote and P. Van den Driessche, Some epidemiological models with nonlinear incidence, Journal of Mathematical Biology, 29 (1991), 271-287.  doi: 10.1007/BF00160539.
    [24] D. A. JonesH. L. Smith and H. R. Thieme, Spread of viral infection of immobilized bacteria, Networks & Heterogeneous Media, 8 (2013), 327-342.  doi: 10.3934/nhm.2013.8.327.
    [25] W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics–I. 1927, Bulletin of mathematical biology, 53 (1991), 33-55. 
    [26] K. Klemm, M. Serrano, V. M. Eguíluz and M. San Miguel, A measure of individual role in collective dynamics, Scientific Reports, 2 (2012), Article number: 292, 8pp. doi: 10.1038/srep00292.
    [27] E. Logak and I. Passat, An epidemic model with nonlocal diffusion on networks, Networks & Heterogeneous Media, 11 (2016), 693-719.  doi: 10.3934/nhm.2016014.
    [28] N. MarilleauC. Lang and P. Giraudoux, Coupling agent-based with equation-based models to study spatially explicit megapopulation dynamics, Ecological Modelling, 384 (2018), 34-42.  doi: 10.1016/j.ecolmodel.2018.06.011.
    [29] C. McPhail and R. T. Wohlstein, Individual and collective behaviors within gatherings, demonstrations, and riots, Annual Review of Sociology, 9 (1983), 579-600.  doi: 10.1146/annurev.so.09.080183.003051.
    [30] J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.
    [31] M. E. J. Newman and D. J. Watts, Scaling and percolation in the small-world network model, Physical Review E, 60 (1999), 7332.  doi: 10.1515/9781400841356.310.
    [32] N. D. Nguyen, Coupling Equation-based and Individual-based Models in the Study of Complex Systems. A Case Study in Theoretical Population Ecology, Ph.D thesis, Pierre and Marie Curie University, 2010.
    [33] F. Schweitzer, Self-organization of Complex Structures: From Individual to Collective Dynamics, Gordon and Breach Science Publishers, Amsterdam, 1997.
    [34] C. J. Silva, G. Cantin, C. Cruz, R. Fonseca-Pinto, R. P. Fonseca, E. S. Santos and D. F. M. Torres, Complex network model for COVID-19: human behavior, pseudo-periodic solutions and multiple epidemic waves, Journal of Mathematical Analysis and Applications, (2021), 125171. doi: 10.1016/j.jmaa.2021.125171.
    [35] C. J. Silva, C. Cruz, D. F. M. Torres et al., Optimal control of the COVID-19 pandemic: Controlled sanitary deconfinement in Portugal, Scientific Reports, 11 (2021), Art. 3451, 15 pp. doi: 10.1038/s41598-021-83075-6.
    [36] H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Soc., Providence, RI, 2011. doi: 10.1090/gsm/118.
    [37] R. H. Turner, L. M. Killian and others, Collective Behavior, Prentice-Hall Englewood Cliffs, NJ, 1957.
    [38] S. Wright, Crowds and Riots: A Study in Social Organization, Sage Publications Beverly Hills, CA, 1978.
    [39] P. Yan and G. Chowell, Beyond the initial phase: Compartment models for disease transmission, in Quantitative Methods for Investigating Infectious Disease Outbreaks (Texts in Applied Mathematics), Springer, Cham, 70 (2019), 135–182.
  • 加载中

Figures(7)

Tables(3)

SHARE

Article Metrics

HTML views(2484) PDF downloads(288) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return