[1]
|
M. Ajelli, B. Gonçalves, D. Balcan, V. Colizza, H. Hu, J. J. Ramasco, S. Merler and A. Vespignani, Comparing wide-scale computational modeling Approaches to epidemic: Agent-based versus structured MetaPopulation models, BMC Infectious Diseases, 10 (2010), Article number: 190.
doi: 10.1186/1471-2334-10-190.
|
[2]
|
L. J. S. Allen, An Introduction to Stochastic Processes with Applications to Biology, Second edition. CRC Press, Boca Raton, FL, 2011.
|
[3]
|
L. J. S. Allen and E. J. Allen, A comparison of three different stochastic population models with regard to persistence time, Theoretical Population Biology, 64 (2003), 439-449.
doi: 10.1016/S0040-5809(03)00104-7.
|
[4]
|
A. Banos, N. Corson, B. Gaudou, V. Laperrière and S. R. Coyrehourcq, The importance of being hybrid for spatial epidemic models: a multi-scale approach, Systems, 3 (2015), 309-329.
doi: 10.3390/systems3040309.
|
[5]
|
A. Banos, C. Lang and M. Nicolas, Agent-based Spatial Simulation with NetLogo, Elsevier, 2017.
doi: 10.1016/C2015-0-01299-0.
|
[6]
|
G. Cantin, Nonidentical coupled networks with a geographical model for human behaviors during catastrophic events, International Journal of Bifurcation and Chaos, 27 (2017), 1750213, 21pp.
doi: 10.1142/S0218127417502133.
|
[7]
|
G. Cantin and C. J. Silva, Influence of the topology on the dynamics of a complex network of HIV/AIDS epidemic models, AIMS Mathematics, 4 (2019), 1145-1169.
doi: 10.3934/math.2019.4.1145.
|
[8]
|
Centers for Disease Control and Prevention, Coronavirus Disease 2019 (COVID-19), 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html.
|
[9]
|
V. Colizza and A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations, Journal of theoretical biology, 251 (2008), 450-467.
doi: 10.1016/j.jtbi.2007.11.028.
|
[10]
|
E. Delisle, C. Rousseau, B. Broche, I. Leparc-Goffart and ot hers, Chikungunya outbreak in Montpellier, France, September to October 2014, Eurosurveillance, 20 (2015), 21108.
doi: 10.2807/1560-7917.ES2015.20.17.21108.
|
[11]
|
Direção Geral da Saúde – COVID-19, Ponto de Situação Atual em Portugal, 2021. Available from: https://covid19.min-saude.pt/ponto-de-situacao-atual-em-portugal/.
|
[12]
|
M. Dolfinand M. Lachowicz, Modeling opinion dynamics: how the network enhances consensus, Networks & Heterogeneous Media, 10 (2015), 877-896.
doi: 10.3934/nhm.2015.10.877.
|
[13]
|
A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 459-482.
doi: 10.1017/S0308210507000455.
|
[14]
|
J. M. Epstein, J. Parker, D. Cummings and R. A. Hammond, Coupled contagion dynamics of fear and disease: Mathematical and computational explorations, PLoS One, 3 (2008), e3955.
doi: 10.1371/journal.pone.0003955.
|
[15]
|
European Centre for Disease Prevention and Control, Guidelines for the Implementation of Non-Pharmaceutical Interventions Against COVID-19, 2020. Available from: https://www.ecdc.europa.eu/en/publications-data/covid-19-guidelines-non-pharmaceutical-interventions.
|
[16]
|
L. Fahse, C. Wissel and V. Grimm, Reconciling classical and individual-based approaches in theoretical population ecology: A protocol for extracting population parameters from individual-based models, The American Naturalist, 152 (1998), 832-856.
doi: 10.1086/286212.
|
[17]
|
S. Galam, Sociophysics: A Physicist's Modeling of Psycho-political Phenomena, Understanding Complex Systems. Springer, New York, 2012.
doi: 10.1007/978-1-4614-2032-3.
|
[18]
|
S. Grauwin, E. Bertin, R. Lemoy and P. Jensen, Competition between collective and individual dynamics, Proceedings of the National Academy of Sciences, 106 (2009), 20622-20626.
doi: 10.1073/pnas.0906263106.
|
[19]
|
J. K. Hale, Ordinary Differential Equations, Krieger Publishing Company (second edition), 1980.
|
[20]
|
D. Helbing, Quantitative Sociodynamics: Stochastic Methods and Models of Social Interaction Processes, Springer-Verlag Berlin Heidelberg, 2010.
doi: 10.1007/978-3-642-11546-2.
|
[21]
|
A. J. Heppenstall, A. T. Crooks, L. M. See and M. Batty, Agent-based Models of Geographical Systems, Springer Science & Business Media, 2011.
doi: 10.1007/978-90-481-8927-4.
|
[22]
|
H. W. Hethcote, Three basic epidemiological models, in Applied Mathematical Ecology, Springer, 18 (1989), 119–144.
doi: 10.1007/978-3-642-61317-3_5.
|
[23]
|
H. W. Hethcote and P. Van den Driessche, Some epidemiological models with nonlinear incidence, Journal of Mathematical Biology, 29 (1991), 271-287.
doi: 10.1007/BF00160539.
|
[24]
|
D. A. Jones, H. L. Smith and H. R. Thieme, Spread of viral infection of immobilized bacteria, Networks & Heterogeneous Media, 8 (2013), 327-342.
doi: 10.3934/nhm.2013.8.327.
|
[25]
|
W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics–I. 1927, Bulletin of mathematical biology, 53 (1991), 33-55.
|
[26]
|
K. Klemm, M. Serrano, V. M. Eguíluz and M. San Miguel, A measure of individual role in collective dynamics, Scientific Reports, 2 (2012), Article number: 292, 8pp.
doi: 10.1038/srep00292.
|
[27]
|
E. Logak and I. Passat, An epidemic model with nonlocal diffusion on networks, Networks & Heterogeneous Media, 11 (2016), 693-719.
doi: 10.3934/nhm.2016014.
|
[28]
|
N. Marilleau, C. Lang and P. Giraudoux, Coupling agent-based with equation-based models to study spatially explicit megapopulation dynamics, Ecological Modelling, 384 (2018), 34-42.
doi: 10.1016/j.ecolmodel.2018.06.011.
|
[29]
|
C. McPhail and R. T. Wohlstein, Individual and collective behaviors within gatherings, demonstrations, and riots, Annual Review of Sociology, 9 (1983), 579-600.
doi: 10.1146/annurev.so.09.080183.003051.
|
[30]
|
J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.
|
[31]
|
M. E. J. Newman and D. J. Watts, Scaling and percolation in the small-world network model, Physical Review E, 60 (1999), 7332.
doi: 10.1515/9781400841356.310.
|
[32]
|
N. D. Nguyen, Coupling Equation-based and Individual-based Models in the Study of Complex Systems. A Case Study in Theoretical Population Ecology, Ph.D thesis, Pierre and Marie Curie University, 2010.
|
[33]
|
F. Schweitzer, Self-organization of Complex Structures: From Individual to Collective Dynamics, Gordon and Breach Science Publishers, Amsterdam, 1997.
|
[34]
|
C. J. Silva, G. Cantin, C. Cruz, R. Fonseca-Pinto, R. P. Fonseca, E. S. Santos and D. F. M. Torres, Complex network model for COVID-19: human behavior, pseudo-periodic solutions and multiple epidemic waves, Journal of Mathematical Analysis and Applications, (2021), 125171.
doi: 10.1016/j.jmaa.2021.125171.
|
[35]
|
C. J. Silva, C. Cruz, D. F. M. Torres et al., Optimal control of the COVID-19 pandemic: Controlled sanitary deconfinement in Portugal, Scientific Reports, 11 (2021), Art. 3451, 15 pp.
doi: 10.1038/s41598-021-83075-6.
|
[36]
|
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Soc., Providence, RI, 2011.
doi: 10.1090/gsm/118.
|
[37]
|
R. H. Turner, L. M. Killian and others, Collective Behavior, Prentice-Hall Englewood Cliffs, NJ, 1957.
|
[38]
|
S. Wright, Crowds and Riots: A Study in Social Organization, Sage Publications Beverly Hills, CA, 1978.
|
[39]
|
P. Yan and G. Chowell, Beyond the initial phase: Compartment models for disease transmission, in Quantitative Methods for Investigating Infectious Disease Outbreaks (Texts in Applied Mathematics), Springer, Cham, 70 (2019), 135–182.
|