[1]
|
F. Brauer, P. van den Driessche and J. Wu, Mathematical Epidemiology, Springer, Berlin, 2008.
doi: 10.1007/978-3-540-78911-6.
|
[2]
|
B. Buonomo and R. Della Marca, Effects of information–induced behavioural changes during the COVID–19 lockdowns: The case of Italy, Royal Society Open Science, 7 (2020), 201635.
doi: 10.1098/rsos.201635.
|
[3]
|
C. Castillo-Chavez, Z. Feng and W. Huang, On the computation of $\mathcal{R}_0$ and its role on global stability, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, Springer, New York, 125 (2002), 229–250.
|
[4]
|
CDC, Centers for Disease Control and Prevention, 2014–2016 Ebola outbreak in West Africa, https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/index.html, 2016, (Accessed on April 2021).
|
[5]
|
CDC, Centers for Disease Control and Prevention, Rubella–Laboratory Testing, https://www.cdc.gov/rubella/lab/rna-detection.html, 2020, (Accessed on June 2021).
|
[6]
|
M. Cevik, K. Kuppalli, J. Kindrachuk and M. Peiris, Virology, transmission, and pathogenesis of SARS–CoV–2, British Medical Journal, 371 (2020), m3862.
doi: 10.1136/bmj.m3862.
|
[7]
|
T. Day, On the evolution of virulence and the relationship between various measures of mortality, Proceedings of the Royal Society of London B, 269 (2002), 1317-1323.
doi: 10.1098/rspb.2002.2021.
|
[8]
|
G. Dimarco, L. Pareschi, G. Toscani and M. Zanella, Wealth distribution under the spread of infectious diseases, Physical Review E, 102 (2020), 022303, 14pp.
doi: 10.1103/physreve.102.022303.
|
[9]
|
G. Dimarco, B. Perthame, G. Toscani and M. Zanella, Kinetic models for epidemic dynamics with social heterogeneity, Journal of Mathematical Biology, 83 (2021), 1-32.
doi: 10.1007/s00285-021-01630-1.
|
[10]
|
J. Dushoff, W. Huang and C. Castillo-Chavez, Backwards bifurcations and catastrophe in simple models of fatal diseases, Journal of Mathematical Biology, 36 (1998), 227-248.
doi: 10.1007/s002850050099.
|
[11]
|
ECDC, European Centre for Disease Prevention and Control, Latest evidence on COVID–19 – Infection, https://www.ecdc.europa.eu/en/covid-19/latest-evidence/infection, 2020, (Accessed on June 2021).
|
[12]
|
European Commission - eurostat, Deaths and crude death rate, https://ec.europa.eu/eurostat/databrowser/view/tps00029/default/table?lang=en, 2021, (Accessed on April 2021).
|
[13]
|
European Commission - eurostat, Live births and crude birth rate, https://ec.europa.eu/eurostat/databrowser/view/TPS00204/bookmark/table?lang=en&bookmarkId=5b6e67ac-186d-4081-aa98-1453b77ec260, 2021, (Accessed on April 2021).
|
[14]
|
J. Fajnzylber, J. Regan, K. Coxen, H. Corry, C. Wong, A. Rosenthal, D. Worrall, F. Giguel, A. Piechocka-Trocha, C. Atyeo, S. Fischinger, A. Chan, K. T. Flaherty, K. Hall, M. Dougan, E. T. Ryan, E. Gillespie, R. Chishti, Y. Li, N. Jilg, D. Hanidziar, R. M. Baron, L. Baden, A. M. Tsibris, K. A. Armstrong, D. R. Kuritzkes, G. Alter, B. D. Walker, X. Yu and J. Z. Li, SARS–CoV–2 viral load is associated with increased disease severity and mortality, Nature Communications, 11 (2020), 5493.
doi: 10.1038/s41467-020-19057-5.
|
[15]
|
A. Goyal, D. B. Reeves, E. F. Cardozo-Ojeda, J. T. Schiffer and B. T. Mayer, Viral load and contact heterogeneity predict SARS–CoV–2 transmission and super–spreading events, eLife, 10 (2021), e63537.
doi: 10.7554/eLife.63537.sa2.
|
[16]
|
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, Berlin, 1983.
doi: 10.1007/978-1-4612-1140-2.
|
[17]
|
X. He, E. H. Y. Lau, P. Wu, X. Deng, W. Jian, X. Hao, Y. C. Lau, J. Y. Wong, Y. Guan, X. Tan, X. Mo, Y. Chen, B. Liao, W. Chen, F. Hu, Q. Zhang, M. Zhong, Y. Wu, L. Zhao, F. Zhang, B. J. Cowling, F. Li and G. M. Leung, Temporal dynamics in viral shedding and transmissibility of COVID–19, Nature Medicine, 26 (2020), 672-675.
doi: 10.1038/s41591-020-0869-5.
|
[18]
|
W. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London A, 115 (1927), 700-721.
|
[19]
|
J. La Salle, Stability by Liapunov's Direct Method with Applications, Academic Press, New York–London, 1961.
|
[20]
|
D. B. Larremore, B. Wilder, E. Lester, S. Shehata, J. M. Burke, J. A. Hay, M. Tambe, M. J. Mina and R. Parker, Test sensitivity is secondary to frequency and turnaround time for COVID–19 screening, Science Advances, 7 (2021), eabd5393.
doi: 10.1126/sciadv.abd5393.
|
[21]
|
N. Lee, P. K. S. Chan, D. S. C. Hui, T. H. Rainer, E. Wong, K.-W. Choi, G. C. Y. Lui, B. C. K. Wong, R. Y. K. Wong, W.-Y. Lam, I. M. T. Chu, R. W. M. Lai, C. S. Cockram and J. J. Y. Sung, Viral loads and duration of viral shedding in adult patients hospitalized with influenza, The Journal of Infectious Diseases, 200 (2009), 492-500.
doi: 10.1086/600383.
|
[22]
|
N. Loy and L. Preziosi, Stability of a non–local kinetic model for cell migration with density dependent orientation bias, Kinetic and Related Models, 13 (2020), 1007-1027.
doi: 10.3934/krm.2020035.
|
[23]
|
N. Loy and A. Tosin, Markov jump processes and collision–like models in the kinetic description of multi–agent systems, Communications in Mathematical Sciences, 18 (2020), 1539-1568.
doi: 10.4310/CMS.2020.v18.n6.a3.
|
[24]
|
N. Loy and A. Tosin, Boltzmann–type equations for multi–agent systems with label switching, Kinetic and Related Models, 14 (2021), 867-894.
doi: 10.3934/krm.2021027.
|
[25]
|
N. Loy and A. Tosin, A viral load–based model for epidemic spread on spatial networks, Mathematical Biosciences and Engineering, 18 (2021), 5635-5663.
doi: 10.3934/mbe.2021285.
|
[26]
|
MATLAB, Matlab release 2020a. The MathWorks, Inc., Natick, MA, 2020.
|
[27]
|
L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, Oxford, 2013.
|
[28]
|
M. Simmonds, D. Brown and L. Jin, Measles viral load may reflect SSPE disease progression, Virology Journal, 3 (2006), 49.
doi: 10.1186/1743-422X-3-49.
|
[29]
|
P. Van den Driessche and J. Watmough, Reproduction numbers and sub–threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[30]
|
Z. Wang, C. T. Bauch, S. Bhattacharyya, A. d'Onofrio, P. Manfredi, M. Perc, N. Perra, M. Salathé and D. Zhao, Statistical physics of vaccination, Physics Reports, 664 (2016), 1-113.
doi: 10.1016/j.physrep.2016.10.006.
|
[31]
|
WHO, World Health Organization, Severe acute respiratory syndrome (SARS), https://www.who.int/csr/don/archive/disease/severe_acute_respiratory_syndrome/en/, 2004, (Accessed on April 2021).
|
[32]
|
WHO, World Health Organization, Diagnostic testing for SARS–CoV–2. Interim guidance., file:///C:/Users/rosde/AppData/Local/Temp/WHO-2019-nCoV-laboratory-2020.6-eng-1.pdf, 2020, (Accessed on May 2021).
|
[33]
|
WHO, World Health Organization, Coronavirus disease (COVID–19) pandemic, https://www.who.int/emergencies/diseases/novel-coronavirus-2019, 2021, (Accessed on April 2021).
|