Flexible HTTP-based Video Adaptive Streaming for good QoE during sudden bandwidth drops

Authors

  • Nguyen Viet Hung Faculty of Information Technology, East Asia University of Technology, Vietnam
  • Trinh Dac Chien VinUniversity image/svg+xml
  • Nam Pham Ngoc VinUniversity image/svg+xml
  • Thu Huong Truong Hanoi University of Science and Technology image/svg+xml

DOI:

https://doi.org/10.4108/eetinis.v10i2.2994

Keywords:

Video adaptive streaming, HTTP, Quality of Experience

Abstract

We have observed a boom in video streaming over the Internet, especially during the Covid-19 pandemic, that could exceed the network resource availability. In addition to upgrading the network infrastructure, finding a way to smartly adapt the streaming system to the network and users’ conditions to satisfy clients’ perceptions is exceptionally critical, too. This paper proposes a new QoE-aware adaptive streaming scheme over HTTP - ABRA - to make flexible adaptations based on the network and the client’s current status. Besides, we propose a technique that can keep the buffer at an average high for more than 10s. We were limiting the phenomena of rebuffering due to unexpected and unpredictable bandwidth changes. The algorithm keeps the quality of subsequent versions’ quality constant even when the average bitrate decreases, increasing the QoE. Experimental results show that our method can improve QoE from 7.86% to 20.41% compared to state-of-the-art methods. ABRA can provide better performance in terms of QoE score in all buffer conditions compared to the existing solutions while maintaining a minimum secured buffer level for the worst case.

Downloads

Download data is not yet available.

References

Cisco Visual Networking Index:, Forecast and Trends, 2017–2022 URL: https://twiki.cern.ch/twiki/pub/HEPIX/ TechwatchNetwork/ HtwNetworkDocu-ments/ white-paper-c11-741490.pdf. Last accessed by Jan 2023

M. A. Khan, E. Baccour, Z. Chkirbene, A. Erbad,R. Hamila, M. Hamdi, and M. Gabbouj, “A survey on mobile edge computing for video streaming: Opportunities and challenges,” IEEE Access, vol. 10, pp. 120514–120550, 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3220694

X. Jiang, F. R. Yu, T. Song, and V. C. M. Leung, “Resource allocation of video streaming over vehicular networks: A survey, some research issues and challenges,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 5955–5975, 2022. DOI: https://doi.org/10.1109/TITS.2021.3065209

D. Nguyen, N. Pham Ngoc, and T. C. Thang, “Qoe models for adaptive streaming: A comprehensive evaluation,” Future Internet, vol. 14, no. 5, 2022. [Online]. Available: https://www.mdpi.com/1999-5903/14/5/151 DOI: https://doi.org/10.3390/fi14050151

W. Jiang, “Graph-based deep learning for communi-cation networks: A survey,” Comput. Commun., vol. 185, no. C, p. 40–54, mar 2022. [Online]. Available: https://doi.org/10.1016/j.comcom.2021.12.015 DOI: https://doi.org/10.1016/j.comcom.2021.12.015

J. Suárez-Varela, P. Almasan, M. Ferriol-Galmés, K. Rusek, F. Geyer, X. Cheng, X. Shi, S. Xiao, F. Scarselli, A. Cabellos-Aparicio, and P. Barlet-Ros, “Graph neural networks for communication networks: Context, use cases and opportunities,” 2022. DOI: https://doi.org/10.1109/MNET.123.2100773

T. C. Thang, H. T. Le, H. X. Nguyen, A. T. Pham, J. W. Kang and Y. M. Ro, "Adaptive video streaming over HTTP with dynamic resource estimation," in Journal of Communications and Networks, vol. 15, no. 6, pp. 635-644, Dec. 2013, doi: 10.1109/JCN.2013.000112. DOI: https://doi.org/10.1109/JCN.2013.000112

P. Juluri, V. Tamarapalli and D. Medhi, "SARA: Segment aware rate adaptation algorithm for dynamic adaptive streaming over HTTP," 2015 IEEE International Conference on Communication Workshop (ICCW), London, 2015, pp. 1765-1770, doi: 10.1109/ICCW.2015.7247436. DOI: https://doi.org/10.1109/ICCW.2015.7247436

Huyen T.T. Tran, Hung T. Le, Nam Pham Ngoc, Anh T. Pham, and Truong Cong Thang, "Quality Improvement for Video On-Demand Streaming over HTTP", IEICE Transactions on Information and Systems, 2017, Volume E100.D, Issue 1, Pages 61-64, Released January 01, 2017, Online ISSN 1745-1361, Print ISSN 0916-8532, https://doi.org/10.1587/transinf.2016MUL0005 DOI: https://doi.org/10.1587/transinf.2016MUL0005

W. Choi and J. Yoon, "SATE: Providing Stable and Agile Adaptation in HTTP-Based Video Streaming," in IEEE Access, vol. 7, pp. 26830-26841, 2019, doi: 10.1109/ACCESS.2019.2901279. DOI: https://doi.org/10.1109/ACCESS.2019.2901279

A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer and R. Zimmermann, "A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP," in IEEE Communi-cations Surveys Tutorials, vol. 21, no. 1, pp. 562-585, Firstquarter 2019, doi: 10.1109/COMST.2018.2862938. DOI: https://doi.org/10.1109/COMST.2018.2862938

Chenghao Liu, Imed Bouazizi, and Moncef Gabbouj. 2011. Rate adaptation for adaptive HTTP streaming. In Proceedings of the second annual ACM conference on Multimedia systems (MMSys ’11). Association for Computing Machinery, New York, NY, USA, 169–174. DOI:https://doi.org/10.1145/1943552.1943575 DOI: https://doi.org/10.1145/1943552.1943575

D. V. Nguyen, H. T. T. Tran, Pham Ngoc Nam and T. C. Thang, "A QoS-adaptive framework for screen sharing over Internet," 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, 2016, pp. 972-974, doi: 10.1109/ICUFN.2016.7536942. DOI: https://doi.org/10.1109/ICUFN.2016.7536942

Z. Li et al., "Probe and Adapt: Rate Adaptation for HTTP Video Streaming At Scale," in IEEE Journal on Selected Areas in Communications, vol. 32, no. 4, pp. 719-733, April 2014, doi: 10.1109/JSAC.2014.140405. DOI: https://doi.org/10.1109/JSAC.2014.140405

Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark Watson. 2014. A buffer-based approach to rate adaptation: evidence from a large video streaming service.SIGCOMM Comput. Commun. Rev. 44, 4 (October 2014), 187–198. DOI:https://doi.org/10.1145/2740070.2626296 DOI: https://doi.org/10.1145/2740070.2626296

C. Mueller, S. Lederer, R. Grandl and C. Timmerer, "Oscillation compensating Dynamic Adaptive Streaming over HTTP," 2015 IEEE International Conference on Multimedia and Expo (ICME), Turin, 2015, pp. 1-6, doi: 10.1109/ICME.2015.7177435. DOI: https://doi.org/10.1109/ICME.2015.7177435

K. Spiteri, R. Urgaonkar and R. K. Sitaraman, "BOLA: Near-optimal bitrate adaptation for online videos," IEEE INFOCOM 2016 - The 35th Annual IEEE Inter-national Conference on Computer Communications, San Francisco, CA, 2016, pp. 1-9, doi: 10.1109/INFO-COM.2016.7524428. DOI: https://doi.org/10.1109/INFOCOM.2016.7524428

Abdelhak Bentaleb, Ali C. Begen, Saad Harous, and Roger Zimmermann. 2018. Want to play DASH?a game theoretic approach for adaptive streaming over HTTP. In Proceedings of the 9th ACM Multime-dia Systems Conference (MMSys ’18). Association for Computing Machinery, New York, NY, USA, 13–26. DOI:https://doi.org/10.1145/3204949.3204961 DOI: https://doi.org/10.1145/3204949.3204961

K. Miller, E. Quacchio, G. Gennari and A. Wolisz, "Adaptation algorithm for adaptive streaming over HTTP," 2012 19th International Packet Video Workshop (PV), Munich, 2012, pp. 173-178, doi: 10.1109/PV.2012.6229732. DOI: https://doi.org/10.1109/PV.2012.6229732

Cong Wang, Amr Rizk, and Michael Zink. 2016. SQUAD: a spectrum-based quality adaptation for dynamic adaptive streaming over HTTP. In Proceedings of the 7th International Conference on Multimedia Systems (MMSys ’16). Association for Computing Machinery, New York, NY, USA, Article 1, 1–12. DOI:https://doi.org/10.1145/2910017.2910593 DOI: https://doi.org/10.1145/2910017.2910593

A. Beben, P. Wiśniewski, J. Mongay Batalla, and P. Krawiec. 2016. ABMA+: lightweight and efficient algorithm for HTTP adaptive streaming. In Proceedings of the 7th International Conference on Multimedia Systems (MMSys ’16). Association for Computing Machinery, New York, NY, USA, Article 2, 1–11. DOI:https://doi.org/10.1145/2910017.2910596 DOI: https://doi.org/10.1145/2910017.2910596

H. T. T. Tran, N. P. Ngoc, A. T. Pham and T. C. Thang, "A Multi-Factor QoE Model for Adaptive Streaming over Mobile Networks," 2016 IEEE Globecom Work-shops (GC Wkshps), 2016, pp. 1-6, doi: 10.1109/GLO-COMW.2016.7848818. DOI: https://doi.org/10.1109/GLOCOMW.2016.7848818

Big Buck Bunny, Xiph.org Test Media, https://media.xiph.org/

Huyen T. T. TRAN, Nam PHAM NGOC, Yong Ju JUNG, Anh T. PHAM, Truong Cong THANG, A Histogram-Based Quality Model for HTTP Adaptive Streaming, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, Volume E100.A, Issue 2, Pages 555-564, Released February 01, 2017, Online ISSN 1745-1337, Print ISSN 0916-8508, https://doi.org/10.1587/transfun.E100.A.555 DOI: https://doi.org/10.1587/transfun.E100.A.555

C. Müller, S. Lederer, and C. Timmerer, "An evalu-ation of dynamic adaptive streaming over HTTP in vehicular environments". In Proceedings of the 4th Work-shop on Mobile Video (MoVid ’12). Association for Computing Machinery, New York, NY, USA, 37–42. DOI:https://doi.org/10.1145/2151677.2151686 DOI: https://doi.org/10.1145/2151677.2151686

C. T. Dac et al., "QoE-aware Video Adaptive Streaming over HTTP," 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE), 2021, pp. 117- 122, doi: 10.1109/ICCE48956.2021.9352077. DOI: https://doi.org/10.1109/ICCE48956.2021.9352077

S. Kumar, R. Devaraj, A. Sarkar and A. Sur, "Client-Side QoE Management for SVC Video Streaming: An FSM Supported Design Approach," in IEEE Transactions on Network and Service Management, vol. 16, no. 3, pp. 1113-1126, Sept. 2019, doi: 10.1109/TNSM.2019.2926720. DOI: https://doi.org/10.1109/TNSM.2019.2926720

D. J. Vergados, A. Michalas, A. Sgora, D. D. Ver-gados and P. Chatzimisios, "FDASH: A Fuzzy-Based MPEG/DASH Adaptation Algorithm," in IEEE Systems Journal, vol. 10, no. 2, pp. 859-868, June 2016, doi: 10.1109/JSYST.2015.2478879. DOI: https://doi.org/10.1109/JSYST.2015.2478879

Rahman, W.u.; Hossain, M.D.; Huh, E.-N. Fuzzy-Based Quality Adaptation Algorithm for Improving QoE from MPEG-DASH Video. Appl. Sci. 2021, 11, 5270. https://doi.org/10.3390/app11115270 DOI: https://doi.org/10.3390/app11115270

W. u. Rahman and K. Chung, "Buffer-Based Adaptive Bitrate Algorithm for Streaming over HTTP," KSII Trans-actions on Internet and Information Systems, vol. 9, no. 11, pp. 4585-4603, 2015. DOI: 10.3837/tiis.2015.11.019. DOI: https://doi.org/10.3837/tiis.2015.11.019

Sobhani, A.; Yassine, A.; Shirmohammadi, S. A fuzzy-based rate adaptation controller for DASH. In Proceed-ings of the 25th ACM Workshop on Network and Oper-ating Systems Support for Digital Audio and Video, Portland, Oregon, 18–20 March 2015;pp. 31–36. DOI: https://doi.org/10.1145/2736084.2736090

J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive. IEEE/ACM Transactions on Networking, 22(1):326–340, Feb 2014 DOI: https://doi.org/10.1109/TNET.2013.2291681

C. Zhou, C. Lin, X. Zhang, and Z. Guo. Tfdash: A fairness, stability, and efficiency aware rate control approach for multiple clients over dash. IEEE Trans-actions on Circuits and Systems for Video Technology, 29(1):198–211,Jan 2019 DOI: https://doi.org/10.1109/TCSVT.2017.2771246

Y. Xiaoqi, J. Abhishek, S. Vyas, and S. Bruno. A control-theoretic approach for dynamic adaptive video streaming over http. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM ’15, pages 325–338, New York, NY, USA, 2015. ACM.

A. H. Zahran, D. Raca and C. J. Sreenan, "ARBITER+: Adaptive Rate-Based InTElligent HTTP StReaming Algorithm for Mobile Networks," in IEEE Transactions on Mobile Computing, vol. 17, no. 12, pp. 2716-2728, 1 Dec. 2018, doi: 10.1109/TMC.2018.2825384. DOI: https://doi.org/10.1109/TMC.2018.2825384

M. Hongzi, N. Ravi, and A. Mohammad. Neural adaptive video streaming with pensieve. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication, SIGCOMM ’17, pages 197–210, New York, NY, USA, 2017. ACM.

Xuekai Wei, Mingliang Zhou, Sam Kwong, Hui Yuan, Shiqi Wang, Guopu Zhu, Jingchao Cao,Reinforcement learning-based QoE-oriented dynamic adaptive streaming framework,Information Sciences,Volume 569,2021,Pages 786-803,ISSN 0020-0255,https://doi.org/10.1016/j.ins.2021.05.012. DOI: https://doi.org/10.1016/j.ins.2021.05.012

L. De Cicco, V. Caldaralo, V. Palmisano and S. Mascolo, "ELASTIC: A Client-Side Controller for Dynamic Adaptive Streaming over HTTP (DASH)," 2013 20th International Packet Video Workshop, 2013, pp. 1-8, doi: 10.1109/PV.2013.6691442. DOI: https://doi.org/10.1109/PV.2013.6691442

S. Sengupta, N. Ganguly, S. Chakraborty and P. De, "HotDASH: Hotspot Aware Adaptive Video Streaming Using Deep Reinforcement Learning," 2018 IEEE 26th International Conference on Network Protocols (ICNP), 2018, pp. 165-175, doi: 10.1109/ICNP.2018.00026. DOI: https://doi.org/10.1109/ICNP.2018.00026

K. Spiteri, R. Sitaraman, and D. Sparacio. From theory to practice: Improving bitrate adaptation in the dash reference player. ACM TOMM, 15(2s):1–29, 2019. DOI: https://doi.org/10.1145/3336497

Z. Akhtar et al., “Oboe: Auto-tuning video ABR algorithms to network conditions,” in Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2018, pp. 44–58. DOI: https://doi.org/10.1145/3230543.3230558

T.Y. Huang et al. 2014. A Buffer-based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service. In SIGCOMM. ACM. DOI: https://doi.org/10.1145/2619239.2626296

Downloads

Published

09-06-2023

How to Cite

Viet Hung, N., Chien, T. D., Pham Ngoc, N., & Truong, T. H. (2023). Flexible HTTP-based Video Adaptive Streaming for good QoE during sudden bandwidth drops. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 10(2), e3. https://doi.org/10.4108/eetinis.v10i2.2994

Funding data