Computer Science > Logic in Computer Science
[Submitted on 14 Sep 2016]
Title:Weighted Linear Dynamic Logic
View PDFAbstract:We introduce a weighted linear dynamic logic (weighted LDL for short) and show the expressive equivalence of its formulas to weighted rational expressions. This adds a new characterization for recognizable series to the fundamental Schützenberger theorem. Surprisingly, the equivalence does not require any restriction to our weighted LDL. Our results hold over arbitrary (resp. totally complete) semirings for finite (resp. infinite) words. As a consequence, the equivalence problem for weighted LDL formulas over fields is decidable in doubly exponential time. In contrast to classical logics, we show that our weighted LDL is expressively incomparable to weighted LTL for finite words. We determine a fragment of the weighted LTL such that series over finite and infinite words definable by LTL formulas in this fragment are definable also by weighted LDL formulas.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Wed, 14 Sep 2016 00:59:07 UTC (22 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.