Parameterized Complexity of Graph Burning

Authors Yasuaki Kobayashi , Yota Otachi



PDF
Thumbnail PDF

File

LIPIcs.IPEC.2020.21.pdf
  • Filesize: 0.57 MB
  • 10 pages

Document Identifiers

Author Details

Yasuaki Kobayashi
  • Kyoto University, Japan
Yota Otachi
  • Nagoya University, Japan

Acknowledgements

The authors would like to thank Michael Lampis for bringing the Graph Burning problem to their attention.

Cite AsGet BibTex

Yasuaki Kobayashi and Yota Otachi. Parameterized Complexity of Graph Burning. In 15th International Symposium on Parameterized and Exact Computation (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 180, pp. 21:1-21:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.IPEC.2020.21

Abstract

Graph Burning asks, given a graph G = (V,E) and an integer k, whether there exists (b₀,… ,b_{k-1}) ∈ V^{k} such that every vertex in G has distance at most i from some b_i. This problem is known to be NP-complete even on connected caterpillars of maximum degree 3. We study the parameterized complexity of this problem and answer all questions arose by Kare and Reddy [IWOCA 2019] about parameterized complexity of the problem. We show that the problem is W[2]-complete parameterized by k and that it does not admit a polynomial kernel parameterized by vertex cover number unless NP ⊆ coNP/poly. We also show that the problem is fixed-parameter tractable parameterized by clique-width plus the maximum diameter among all connected components. This implies the fixed-parameter tractability parameterized by modular-width, by treedepth, and by distance to cographs. Although the parameterization by distance to split graphs cannot be handled with the clique-width argument, we show that this is also tractable by a reduction to a generalized problem with a smaller solution size.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Graph burning
  • parameterized complexity
  • fixed-parameter tractability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Stéphane Bessy, Anthony Bonato, Jeannette C. M. Janssen, Dieter Rautenbach, and Elham Roshanbin. Burning a graph is hard. Discret. Appl. Math., 232:73-87, 2017. URL: https://doi.org/10.1016/j.dam.2017.07.016.
  2. Stéphane Bessy, Anthony Bonato, Jeannette C. M. Janssen, Dieter Rautenbach, and Elham Roshanbin. Bounds on the burning number. Discret. Appl. Math., 235:16-22, 2018. URL: https://doi.org/10.1016/j.dam.2017.09.012.
  3. Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci., 412(35):4570-4578, 2011. URL: https://doi.org/10.1016/j.tcs.2011.04.039.
  4. Anthony Bonato. A survey of graph burning. CoRR, abs/2009.10642, 2020. URL: http://arxiv.org/abs/2009.10642.
  5. Anthony Bonato, Sean English, Bill Kay, and Daniel Moghbel. Improved bounds for burning fence graphs. CoRR, abs/1911.01342, 2019. URL: http://arxiv.org/abs/1911.01342.
  6. Anthony Bonato, Karen Gunderson, and Amy Shaw. Burning the plane. Graphs Comb., 36:1311-1335, 2020. URL: https://doi.org/10.1007/s00373-020-02182-9.
  7. Anthony Bonato, Jeannette C. M. Janssen, and Elham Roshanbin. Burning a graph as a model of social contagion. In WAW 2014, volume 8882 of Lecture Notes in Computer Science, pages 13-22, 2014. URL: https://doi.org/10.1007/978-3-319-13123-8_2.
  8. Anthony Bonato, Jeannette C. M. Janssen, and Elham Roshanbin. How to burn a graph. Internet Math., 12(1-2):85-100, 2016. URL: https://doi.org/10.1080/15427951.2015.1103339.
  9. Anthony Bonato and Shahin Kamali. Approximation algorithms for graph burning. In TAMC 2019, volume 11436 of Lecture Notes in Computer Science, pages 74-92, 2019. URL: https://doi.org/10.1007/978-3-030-14812-6_6.
  10. Anthony Bonato and Thomas Lidbetter. Bounds on the burning numbers of spiders and path-forests. Theor. Comput. Sci., 794:12-19, 2019. URL: https://doi.org/10.1016/j.tcs.2018.05.035.
  11. Derek G. Corneil and Udi Rotics. On the relationship between clique-width and treewidth. SIAM J. Comput., 34(4):825-847, 2005. URL: https://doi.org/10.1137/S0097539701385351.
  12. Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125-150, 2000. URL: https://doi.org/10.1007/s002249910009.
  13. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  14. Sandip Das, Subhadeep Ranjan Dev, Arpan Sadhukhan, Uma Kant Sahoo, and Sagnik Sen. Burning spiders. In CALDAM 2018, volume 10743 of Lecture Notes in Computer Science, pages 155-163, 2018. URL: https://doi.org/10.1007/978-3-319-74180-2_13.
  15. Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through colors and IDs. ACM Trans. Algorithms, 11(2):13:1-13:20, 2014. URL: https://doi.org/10.1145/2650261.
  16. Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness I: basic results. SIAM J. Comput., 24(4):873-921, 1995. URL: https://doi.org/10.1137/S0097539792228228.
  17. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, 1999. URL: https://doi.org/10.1007/978-1-4612-0515-9.
  18. Zahra Rezai Farokh, Maryam Tahmasbi, Zahra Haj Rajab Ali Tehrani, and Yousof Buali. New heuristics for burning graphs. CoRR, abs/2003.09314, 2020. URL: http://arxiv.org/abs/2003.09314.
  19. Shannon L. Fitzpatrick and Leif Wilm. Burning circulant graphs. CoRR, abs/1706.03106, 2017. URL: http://arxiv.org/abs/1706.03106.
  20. Stephane Foldes and Peter L. Hammer. Split graphs. In the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing, volume 19 of Congressus Numerantium, pages 311-315, 1977. Google Scholar
  21. Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger. Exact (exponential) algorithms for the dominating set problem. In WG 2004, volume 3353 of Lecture Notes in Computer Science, pages 245-256, 2004. URL: https://doi.org/10.1007/978-3-540-30559-0_21.
  22. Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for modular-width. In IPEC 2013, volume 8246 of Lecture Notes in Computer Science, pages 163-176, 2013. URL: https://doi.org/10.1007/978-3-319-03898-8_15.
  23. Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of nowhere dense graphs. J. ACM, 64(3):17:1-17:32, 2017. URL: https://doi.org/10.1145/3051095.
  24. Frank Gurski. The behavior of clique-width under graph operations and graph transformations. Theory Comput. Syst., 60(2):346-376, 2017. URL: https://doi.org/10.1007/s00224-016-9685-1.
  25. Michaela Hiller, Eberhard Triesch, and Arie M. C. A. Koster. On the burning number of p-caterpillars. CoRR, abs/1912.10897, 2019. URL: http://arxiv.org/abs/1912.10897.
  26. Remie Janssen. The burning number of directed graphs: Bounds and computational complexity. CoRR, abs/2001.03381, 2020. URL: http://arxiv.org/abs/2001.03381.
  27. Shahin Kamali, Avery Miller, and Kenny Zhang. Burning two worlds. In SOFSEM 2020, volume 12011, pages 113-124. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-38919-2_10.
  28. Anjeneya Swami Kare and I. Vinod Reddy. Parameterized algorithms for graph burning problem. In IWOCA 2019, volume 11638 of Lecture Notes in Computer Science, pages 304-314, 2019. URL: https://doi.org/10.1007/978-3-030-25005-8_25.
  29. Max R. Land and Linyuan Lu. An upper bound on the burning number of graphs. In WAW 2016, volume 10088 of Lecture Notes in Computer Science, pages 1-8, 2016. Google Scholar
  30. Huiqing Liu, Xuejiao Hu, and Xiaolan Hu. Burning number of caterpillars. Discret. Appl. Math., 284:332-340, 2020. URL: https://doi.org/10.1016/j.dam.2020.03.062.
  31. Huiqing Liu, Xuejiao Hu, and Xiaolan Hu. Burning numbers of path forests and spiders. Bull. Malays. Math. Sci. Soc., 2020. to appear. URL: https://doi.org/10.1007/s40840-020-00969-w.
  32. Huiqing Liu, Ruiting Zhang, and Xiaolan Hu. Burning number of theta graphs. Appl. Math. Comput., 361:246-257, 2019. URL: https://doi.org/10.1016/j.amc.2019.05.031.
  33. Dieter Mitsche, Pawel Pralat, and Elham Roshanbin. Burning graphs: A probabilistic perspective. Graphs Comb., 33(2):449-471, 2017. URL: https://doi.org/10.1007/s00373-017-1768-5.
  34. Dieter Mitsche, Pawel Pralat, and Elham Roshanbin. Burning number of graph products. Theor. Comput. Sci., 746:124-135, 2018. URL: https://doi.org/10.1016/j.tcs.2018.06.036.
  35. Debajyoti Mondal, N. Parthiban, V. Kavitha, and Indra Rajasingh. APX-hardness and approximation for the k-burning number problem. CoRR, abs/2006.14733, 2020. URL: http://arxiv.org/abs/2006.14733.
  36. Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity: Graphs, Structures, and Algorithms. Algorithms and combinatorics. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-27875-4.
  37. Sang-il Oum. Approximating rank-width and clique-width quickly. ACM Trans. Algorithms, 5(1):10:1-10:20, 2008. URL: https://doi.org/10.1145/1435375.1435385.
  38. Manuel Sorge and Mathias Weller. The graph parameter hierarchy, 2019. URL: https://manyu.pro/assets/parameter-hierarchy.pdf.
  39. Ta Sheng Tan and Wen Chean Teh. Graph burning: Tight bounds on the burning numbers of path forests and spiders. Appl. Math. Comput., 385:125447, 2020. URL: https://doi.org/10.1016/j.amc.2020.125447.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail