Shortest Path Separators in Unit Disk Graphs

Authors Elfarouk Harb , Zhengcheng Huang , Da Wei Zheng



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.66.pdf
  • Filesize: 0.89 MB
  • 14 pages

Document Identifiers

Author Details

Elfarouk Harb
  • Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
Zhengcheng Huang
  • Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
Da Wei Zheng
  • Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Cite AsGet BibTex

Elfarouk Harb, Zhengcheng Huang, and Da Wei Zheng. Shortest Path Separators in Unit Disk Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 66:1-66:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.66

Abstract

We introduce a new balanced separator theorem for unit-disk graphs involving two shortest paths combined with the 1-hop neighbours of those paths and two other vertices. This answers an open problem of Yan, Xiang and Dragan [CGTA '12] and improves their result that requires removing the 3-hop neighbourhood of two shortest paths. Our proof uses very different ideas, including Delaunay triangulations and a generalization of the celebrated balanced separator theorem of Lipton and Tarjan [J. Appl. Math. '79] to systems of non-intersecting paths.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
  • Theory of computation → Computational geometry
Keywords
  • Balanced shortest path separators
  • unit disk graphs
  • crossings

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ittai Abraham and Cyril Gavoille. Object location using path separators. In Eric Ruppert and Dahlia Malkhi, editors, Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing, PODC 2006, Denver, CO, USA, July 23-26, 2006, pages 188-197. ACM, 2006. URL: https://doi.org/10.1145/1146381.1146411.
  2. Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for nonplanar graphs. J. Amer. Math. Soc., 3(4):801-808, 1990. URL: https://doi.org/10.2307/1990903.
  3. Sergio Cabello and Miha Jejčič. Shortest paths in intersection graphs of unit disks. Comput. Geom., 48(4):360-367, 2015. URL: https://doi.org/10.1016/j.comgeo.2014.12.003.
  4. Paz Carmi, Man-Kwun Chiu, Matthew J. Katz, Matias Korman, Yoshio Okamoto, André van Renssen, Marcel Roeloffzen, Taichi Shiitada, and Shakhar Smorodinsky. Balanced line separators of unit disk graphs. Comput. Geom., 86, 2020. URL: https://doi.org/10.1016/j.comgeo.2019.101575.
  5. Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithms, 46(2):178-189, 2003. URL: https://doi.org/10.1016/S0196-6774(02)00294-8.
  6. Timothy M. Chan. Finding triangles and other small subgraphs in geometric intersection graphs. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 1777-1805. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH68.
  7. Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in geometric intersection graphs. J. Comput. Geom., 10(1):27-41, 2019. URL: https://doi.org/10.20382/JOCG.V10I1A2.
  8. Timothy M. Chan and Dimitrios Skrepetos. Approximate shortest paths and distance oracles in weighted unit-disk graphs. J. Comput. Geom., 10(2):3-20, 2019. URL: https://doi.org/10.20382/JOCG.V10I2A2.
  9. Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1655-1670. SIAM, 2015. URL: https://doi.org/10.1137/1.9781611973730.110.
  10. Hsien-Chih Chang, Jie Gao, and Hung Le. Computing diameter+2 in truly-subquadratic time for unit-disk graphs. In Wolfgang Mulzer and Jeff M. Phillips, editors, 40th International Symposium on Computational Geometry, SoCG 2024, June 11-14, 2024, Athens, Greece, volume 293 of LIPIcs, pages 38:1-38:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPICS.SOCG.2024.38.
  11. Hsien-Chih Chang, Robert Krauthgamer, and Zihan Tan. Almost-linear ε-emulators for planar graphs. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1311-1324. ACM, 2022. URL: https://doi.org/10.1145/3519935.3519998.
  12. L. Paul Chew. Constrained delaunay triangulations. Algorithmica, 4(1):97-108, 1989. URL: https://doi.org/10.1007/BF01553881.
  13. Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discret. Math., 86(1-3):165-177, 1990. URL: https://doi.org/10.1016/0012-365X(90)90358-O.
  14. Mark de Berg, Sándor Kisfaludi-Bak, Morteza Monemizadeh, and Leonidas Theocharous. Clique-based separators for geometric intersection graphs. Algorithmica, 85(6):1652-1678, 2023. URL: https://doi.org/10.1007/S00453-022-01041-8.
  15. Matthew Dickerson and Robert L. (Scot) Drysdale III. Fixed-radius near neighbors search algorithms for points and segments. Inf. Process. Lett., 35(5):269-273, 1990. URL: https://doi.org/10.1016/0020-0190(90)90056-4.
  16. Hristo N Djidjev. A separator theorem. Compt. Rend. Acad. Bulg. Sci., 34(5):643-645, 1981. Google Scholar
  17. Jeff Erickson and Amir Nayyeri. Shortest non-crossing walks in the plane. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 297-208. SIAM, 2011. URL: https://doi.org/10.1137/1.9781611973082.25.
  18. Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes for geometric intersection graphs. SIAM J. Comput., 34(6):1302-1323, 2005. URL: https://doi.org/10.1137/S0097539702402676.
  19. Jacob Fox and János Pach. Separator theorems and Turán-type results for planar intersection graphs. Adv. Math., 219(3):1070-1080, 2008. URL: https://doi.org/10.1016/j.aim.2008.06.002.
  20. Jacob Fox and János Pach. Applications of a new separator theorem for string graphs. Comb. Probab. Comput., 23(1):66-74, 2014. URL: https://doi.org/10.1017/S0963548313000412.
  21. Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput., 16(6):1004-1022, 1987. URL: https://doi.org/10.1137/0216064.
  22. Zachary Friggstad and Ramin Mousavi. An O(log k)-approximation for directed steiner tree in planar graphs. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 63:1-63:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ICALP.2023.63.
  23. Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric and its applications. SIAM J. Comput., 35(1):151-169, 2005. URL: https://doi.org/10.1137/S0097539703436357.
  24. John R. Gilbert, Joan P. Hutchinson, and Robert Endre Tarjan. A separator theorem for graphs of bounded genus. J. Algorithms, 5(3):391-407, 1984. URL: https://doi.org/10.1016/0196-6774(84)90019-1.
  25. Michael T. Goodrich. Planar separators and parallel polygon triangulation. J. Comput. Syst. Sci., 51(3):374-389, 1995. URL: https://doi.org/10.1006/JCSS.1995.1076.
  26. Sariel Har-Peled and Kent Quanrud. Approximation algorithms for polynomial-expansion and low-density graphs. SIAM J. Comput., 46(6):1712-1744, 2017. URL: https://doi.org/10.1137/16M1079336.
  27. Sariel Har-Peled and Everett Yang. Approximation algorithms for maximum matchings in geometric intersection graphs. In Xavier Goaoc and Michael Kerber, editors, 38th International Symposium on Computational Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages 47:1-47:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.SOCG.2022.47.
  28. Harry B. Hunt III, Madhav V. Marathe, Venkatesh Radhakrishnan, S. S. Ravi, Daniel J. Rosenkrantz, and Richard Edwin Stearns. NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. J. Algorithms, 26(2):238-274, 1998. URL: https://doi.org/10.1006/JAGM.1997.0903.
  29. Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Routing in unit disk graphs. Algorithmica, 80(3):830-848, 2018. URL: https://doi.org/10.1007/S00453-017-0308-2.
  30. Ken-ichi Kawarabayashi and Bruce A. Reed. A separator theorem in minor-closed classes. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 153-162. IEEE Computer Society, 2010. URL: https://doi.org/10.1109/FOCS.2010.22.
  31. Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. Embeddings of planar quasimetrics into directed l1 and polylogarithmic approximation for directed sparsest-cut. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 480-491. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00055.
  32. Philip N. Klein. Preprocessing an undirected planar network to enable fast approximate distance queries. In David Eppstein, editor, Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA, pages 820-827. ACM/SIAM, 2002. URL: http://dl.acm.org/citation.cfm?id=545381.545488.
  33. Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator decompositions for planar graphs in linear time. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC'13, Palo Alto, CA, USA, June 1-4, 2013, pages 505-514. ACM, 2013. URL: https://doi.org/10.1145/2488608.2488672.
  34. Hung Le and Christian Wulff-Nilsen. Optimal approximate distance oracle for planar graphs. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 363-374. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00044.
  35. James R. Lee. Separators in region intersection graphs. In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs, pages 1:1-1:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ITCS.2017.1.
  36. Jason Li and Merav Parter. Planar diameter via metric compression. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 152-163. ACM, 2019. URL: https://doi.org/10.1145/3313276.3316358.
  37. Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied Mathematics, 36(2):177-189, 1979. URL: https://doi.org/10.1137/013601.
  38. Jirí Matousek. Near-optimal separators in string graphs. Comb. Probab. Comput., 23(1):135-139, 2014. URL: https://doi.org/10.1017/S0963548313000400.
  39. Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci., 32(3):265-279, 1986. URL: https://doi.org/10.1016/0022-0000(86)90030-9.
  40. Gary L. Miller, Shang-Hua Teng, William P. Thurston, and Stephen A. Vavasis. Separators for sphere-packings and nearest neighbor graphs. J. ACM, 44(1):1-29, 1997. URL: https://doi.org/10.1145/256292.256294.
  41. Warren D. Smith and Nicholas C. Wormald. Geometric separator theorems & applications. In 39th Annual Symposium on Foundations of Computer Science, FOCS '98, November 8-11, 1998, Palo Alto, California, USA, pages 232-243. IEEE Computer Society, 1998. URL: https://doi.org/10.1109/SFCS.1998.743449.
  42. Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs. J. ACM, 51(6):993-1024, 2004. URL: https://doi.org/10.1145/1039488.1039493.
  43. Christian Wulff-Nilsen. Separator theorems for minor-free and shallow minor-free graphs with applications. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 37-46. IEEE Computer Society, 2011. URL: https://doi.org/10.1109/FOCS.2011.15.
  44. Chenyu Yan, Yang Xiang, and Feodor F. Dragan. Compact and low delay routing labeling scheme for unit disk graphs. Comput. Geom., 45(7):305-325, 2012. URL: https://doi.org/10.1016/J.COMGEO.2012.01.015.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail