Semialgebraic Range Stabbing, Ray Shooting, and Intersection Counting in the Plane

Authors Timothy M. Chan , Pingan Cheng , Da Wei Zheng



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.33.pdf
  • Filesize: 0.85 MB
  • 15 pages

Document Identifiers

Author Details

Timothy M. Chan
  • University of Illinois Urbana-Champaign, Urbana, IL, USA
Pingan Cheng
  • Aarhus University, Denmark
Da Wei Zheng
  • University of Illinois Urbana-Champaign, Urbana, IL, USA

Cite AsGet BibTex

Timothy M. Chan, Pingan Cheng, and Da Wei Zheng. Semialgebraic Range Stabbing, Ray Shooting, and Intersection Counting in the Plane. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 33:1-33:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.33

Abstract

Polynomial partitioning techniques have recently led to improved geometric data structures for a variety of fundamental problems related to semialgebraic range searching and intersection searching in 3D and higher dimensions (e.g., see [Agarwal, Aronov, Ezra, and Zahl, SoCG 2019; Ezra and Sharir, SoCG 2021; Agarwal, Aronov, Ezra, Katz, and Sharir, SoCG 2022]). They have also led to improved algorithms for offline versions of semialgebraic range searching in 2D, via lens-cutting [Sharir and Zahl (2017)]. In this paper, we show that these techniques can yield new data structures for a number of other 2D problems even for online queries: 1) Semialgebraic range stabbing. We present a data structure for n semialgebraic ranges in 2D of constant description complexity with O(n^{3/2+ε}) preprocessing time and space, so that we can count the number of ranges containing a query point in O(n^{1/4+ε}) time, for an arbitrarily small constant ε > 0. (The query time bound is likely close to tight for this space bound.) 2) Ray shooting amid algebraic arcs. We present a data structure for n algebraic arcs in 2D of constant description complexity with O(n^{3/2+ε}) preprocessing time and space, so that we can find the first arc hit by a query (straight-line) ray in O(n^{1/4+ε}) time. (The query bound is again likely close to tight for this space bound, and they improve a result by Ezra and Sharir with near n^{3/2} space and near √n query time.) 3) Intersection counting amid algebraic arcs. We present a data structure for n algebraic arcs in 2D of constant description complexity with O(n^{3/2+ε}) preprocessing time and space, so that we can count the number of intersection points with a query algebraic arc of constant description complexity in O(n^{1/2+ε}) time. In particular, this implies an O(n^{3/2+ε})-time algorithm for counting intersections between two sets of n algebraic arcs in 2D. (This generalizes a classical O(n^{3/2+ε})-time algorithm for circular arcs by Agarwal and Sharir from SoCG 1991.)

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Computational geometry
  • range searching
  • intersection searching
  • semialgebraic sets
  • data structures
  • polynomial partitioning

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Peyman Afshani. Improved pointer machine and I/O lower bounds for simplex range reporting and related problems. Internat. J. Comput. Geom. Appl., 23(4-5):233-251, 2013. Preliminary version in SoCG 2012. URL: https://doi.org/10.1142/S0218195913600054.
  2. Peyman Afshani and Pingan Cheng. Lower bounds for semialgebraic range searching and stabbing problems. J. ACM, 70(2):16:1-16:26, 2023. Preliminary version in SoCG 2021. URL: https://doi.org/10.1145/3578574.
  3. P. K. Agarwal and J. Matoušek. On range searching with semialgebraic sets. Discrete Comput. Geom., 11(4):393-418, 1994. URL: https://doi.org/10.1007/BF02574015.
  4. Pankaj K. Agarwal. Ray shooting and other applications of spanning trees with low stabbing number. SIAM J. Comput., 21(3):540-570, 1992. Preliminary version in SoCG 1989. URL: https://doi.org/10.1137/0221035.
  5. Pankaj K. Agarwal. Range searching. In J. E. Goodman, J. O'Rourke, and C. Toth, editors, Handbook of Discrete and Computational Geometry. CRC Press, 2016. Google Scholar
  6. Pankaj K. Agarwal, Noga Alon, Boris Aronov, and Subhash Suri. Can visibility graphs be represented compactly? Discret. Comput. Geom., 12:347-365, 1994. Preliminary version in SoCG 1993. URL: https://doi.org/10.1007/BF02574385.
  7. Pankaj K. Agarwal, Boris Aronov, Esther Ezra, Matthew J. Katz, and Micha Sharir. Intersection queries for flat semi-algebraic objects in three dimensions and related problems. In Proc. 38th International Symposium on Computational Geometry (SoCG), pages 4:1-4:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/lipics.socg.2022.4.
  8. Pankaj K. Agarwal, Boris Aronov, Esther Ezra, and Joshua Zahl. Efficient algorithm for generalized polynomial partitioning and its applications. SIAM J. Comput., 50(2):760-787, 2021. Preliminary version in SoCG 2019. URL: https://doi.org/10.1137/19M1268550.
  9. Pankaj K. Agarwal, Esther Ezra, and Micha Sharir. Semi-algebraic off-line range searching and biclique partitions in the plane. In Proc. 40th International Symposium on Computational Geometry (SoCG), 2024. To appear. Google Scholar
  10. Pankaj K. Agarwal and Jiří Matoušek. Ray shooting and parametric search. SIAM J. Comput., 22(4):794-806, 1993. URL: https://doi.org/10.1137/0222051.
  11. Pankaj K. Agarwal, Jiří Matoušek, and Micha Sharir. On range searching with semialgebraic sets. II. SIAM J. Comput., 42(6):2039-2062, 2013. URL: https://doi.org/10.1137/120890855.
  12. Pankaj K. Agarwal, Eran Nevo, János Pach, Rom Pinchasi, Micha Sharir, and Shakhar Smorodinsky. Lenses in arrangements of pseudo-circles and their applications. J. ACM, 51(2):139-186, 2004. URL: https://doi.org/10.1145/972639.972641.
  13. Pankaj K. Agarwal, Marco Pellegrini, and Micha Sharir. Counting circular arc intersections. SIAM J. Comput., 22(4):778-793, 1993. Preliminary version in SoCG 1991. URL: https://doi.org/10.1137/0222050.
  14. Pankaj K. Agarwal and Micha Sharir. Pseudo-line arrangements: duality, algorithms, and applications. SIAM J. Comput., 34(3):526-552, 2005. URL: https://doi.org/10.1137/S0097539703433900.
  15. Pankaj K. Agarwal, Marc J. van Kreveld, and Mark H. Overmars. Intersection queries in curved objects. J. Algorithms, 15(2):229-266, 1993. Preliminary version in SoCG 1991. URL: https://doi.org/10.1006/JAGM.1993.1040.
  16. Boris Aronov and Micha Sharir. Cutting circles into pseudo-segments and improved bounds for incidences and complexity of many faces. Discret. Comput. Geom., 28(4):475-490, 2002. URL: https://doi.org/10.1007/S00454-001-0084-1.
  17. Boris Aronov and Micha Sharir. Almost tight bounds for eliminating depth cycles in three dimensions. Discret. Comput. Geom., 59(3):725-741, 2018. URL: https://doi.org/10.1007/S00454-017-9920-9.
  18. Egbert Brieskorn and Horst Knörrer. Plane Algebraic Curves. Springer Science & Business Media, 2012. Translated by J. Stillwell. Google Scholar
  19. Timothy M. Chan. Geometric applications of a randomized optimization technique. Discret. Comput. Geom., 22(4):547-567, 1999. Preliminary version in SoCG 1998. URL: https://doi.org/10.1007/PL00009478.
  20. Timothy M. Chan. On levels in arrangements of curves. Discret. Comput. Geom., 29(3):375-393, 2003. URL: https://doi.org/10.1007/S00454-002-2840-2.
  21. Timothy M. Chan. Optimal partition trees. Discrete Comput. Geom., 47(4):661-690, 2012. Preliminary version in SoCG 2010. URL: https://doi.org/10.1007/s00454-012-9410-z.
  22. Timothy M. Chan. Near-optimal randomized algorithms for selection in totally monotone matrices. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1483-1495, 2021. URL: https://doi.org/10.1137/1.9781611976465.89.
  23. Timothy M. Chan and Da Wei Zheng. Hopcroft’s problem, log-star shaving, 2D fractional cascading, and decision trees. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 190-210, 2022. URL: https://doi.org/10.1137/1.9781611977073.10.
  24. B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in geometry. Combinatorica, 10(3):229-249, 1990. URL: https://doi.org/10.1007/BF02122778.
  25. Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discret. Comput. Geom., 9:145-158, 1993. URL: https://doi.org/10.1007/BF02189314.
  26. Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, and Micha Sharir. Algorithms for bichromatic line-segment problems and polyhedral terrains. Algorithmica, 11(2):116-132, 1994. URL: https://doi.org/10.1007/BF01182771.
  27. Bernard Chazelle and Emo Welzl. Quasi-optimal range searching in space of finite VC-dimension. Discret. Comput. Geom., 4:467-489, 1989. URL: https://doi.org/10.1007/BF02187743.
  28. Kenneth L. Clarkson and Peter W. Shor. Application of random sampling in computational geometry, II. Discret. Comput. Geom., 4:387-421, 1989. Preliminary version in SoCG 1988. URL: https://doi.org/10.1007/BF02187740.
  29. Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational Geometry: Algorithms and Applications. Springer, 3rd edition, 2008. Google Scholar
  30. Jordan S. Ellenberg, Jozsef Solymosi, and Joshua Zahl. New bounds on curve tangencies and orthogonalities. Discrete Analysis, November 2016. URL: https://doi.org/10.19086/da.990.
  31. Esther Ezra and Micha Sharir. Intersection searching amid tetrahedra in 4-space and efficient continuous collision detection. In Proc. 30th Annual European Symposium on Algorithms (ESA), pages 51:1-51:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/lipics.esa.2022.51.
  32. Esther Ezra and Micha Sharir. On ray shooting for triangles in 3-space and related problems. SIAM J. Comput., 51(4):1065-1095, 2022. Preliminary version in SoCG 2021. URL: https://doi.org/10.1137/21M1408245.
  33. Tomás Feder and Rajeev Motwani. Clique partitions, graph compression and speeding-up algorithms. J. Comput. Syst. Sci., 51(2):261-272, 1995. URL: https://doi.org/10.1006/JCSS.1995.1065.
  34. Ido Y. Grabinsky. Deferred data structures for online disk range searching. Master’s thesis, Tel-Aviv University, February 2009. URL: http://www.cs.tau.ac.il/thesis/thesis/thesis_ido.pdf.
  35. Larry Guth. Polynomial partitioning for a set of varieties. Math. Proc. Cambridge Philos. Soc., 159(3):459-469, 2015. URL: https://doi.org/10.1017/S0305004115000468.
  36. Larry Guth and Nets Hawk Katz. On the Erdős distinct distances problem in the plane. Ann. of Math. (2), 181(1):155-190, 2015. URL: https://doi.org/10.4007/annals.2015.181.1.2.
  37. Haim Kaplan, Jirí Matousek, and Micha Sharir. Simple proofs of classical theorems in discrete geometry via the Guth-Katz polynomial partitioning technique. Discret. Comput. Geom., 48(3):499-517, 2012. URL: https://doi.org/10.1007/S00454-012-9443-3.
  38. Vladlen Koltun. Segment intersection searching problems in general settings. Discret. Comput. Geom., 30(1):25-44, 2003. Preliminary version in SoCG 2001. URL: https://doi.org/10.1007/S00454-003-2924-7.
  39. Adam Marcus and Gábor Tardos. Intersection reverse sequences and geometric applications. J. Comb. Theory, Ser. A, 113(4):675-691, 2006. URL: https://doi.org/10.1016/J.JCTA.2005.07.002.
  40. Jirí Matoušek. Efficient partition trees. Discret. Comput. Geom., 8:315-334, 1992. Preliminary version in SoCG 1991. URL: https://doi.org/10.1007/BF02293051.
  41. Jiří Matoušek and Zuzana Patáková. Multilevel polynomial partitions and simplified range searching. Discrete Comput. Geom., 54(1):22-41, 2015. URL: https://doi.org/10.1007/s00454-015-9701-2.
  42. Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. ACM, 30(4):852-865, 1983. URL: https://doi.org/10.1145/2157.322410.
  43. Micha Sharir and Joshua Zahl. Cutting algebraic curves into pseudo-segments and applications. J. Combin. Theory Ser. A, 150:1-35, 2017. URL: https://doi.org/10.1016/j.jcta.2017.02.006.
  44. Hisao Tamaki and Takeshi Tokuyama. How to cut pseudoparabolas into segments. Discret. Comput. Geom., 19(2):265-290, 1998. Preliminary version in SoCG 1995. URL: https://doi.org/10.1007/PL00009345.
  45. Emo Welzl. Partition trees for triangle counting and other range searching problems. In Proc. 4th Annual Symposium on Computational Geometry (SoCG), pages 23-33, 1988. URL: https://doi.org/10.1145/73393.73397.
  46. Emo Welzl. On spanning trees with low crossing numbers. In Data Structures and Efficient Algorithms, volume 594 of Lecture Notes in Comput. Sci., pages 233-249. Springer, Berlin, 1992. URL: https://doi.org/10.1007/3-540-55488-2_30.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail