Trust, Accountability, and Autonomy in Knowledge Graph-Based AI for Self-Determination

Authors Luis-Daniel Ibáñez , John Domingue , Sabrina Kirrane , Oshani Seneviratne , Aisling Third , Maria-Esther Vidal



PDF
Thumbnail PDF

File

TGDK.1.1.9.pdf
  • Filesize: 1.86 MB
  • 32 pages

Document Identifiers

Author Details

Luis-Daniel Ibáñez
  • Department of Electronics and Computer Science, University of Southampton, UK
John Domingue
  • Knowledge Media Institute, The Open University, Milton Keynes, UK
Sabrina Kirrane
  • Institute for Information Systems & New Media, Vienna University of Economics and Business, Austria
Oshani Seneviratne
  • Department of Computer Science, Rensselaer Polytechnic Institute, USA
Aisling Third
  • Knowledge Media Institute, The Open University, Milton Keynes, UK
Maria-Esther Vidal
  • Leibniz University of Hannover, Germany
  • TIB-Leibniz Information Centre of Science and Technology, Hannover, Germany
  • L3S Research Centre, Hannover, Germany

Cite AsGet BibTex

Luis-Daniel Ibáñez, John Domingue, Sabrina Kirrane, Oshani Seneviratne, Aisling Third, and Maria-Esther Vidal. Trust, Accountability, and Autonomy in Knowledge Graph-Based AI for Self-Determination. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 9:1-9:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/TGDK.1.1.9

Abstract

Knowledge Graphs (KGs) have emerged as fundamental platforms for powering intelligent decision-making and a wide range of Artificial Intelligence (AI) services across major corporations such as Google, Walmart, and AirBnb. KGs complement Machine Learning (ML) algorithms by providing data context and semantics, thereby enabling further inference and question-answering capabilities. The integration of KGs with neuronal learning (e.g., Large Language Models (LLMs)) is currently a topic of active research, commonly named neuro-symbolic AI. Despite the numerous benefits that can be accomplished with KG-based AI, its growing ubiquity within online services may result in the loss of self-determination for citizens as a fundamental societal issue. The more we rely on these technologies, which are often centralised, the less citizens will be able to determine their own destinies. To counter this threat, AI regulation, such as the European Union (EU) AI Act, is being proposed in certain regions. The regulation sets what technologists need to do, leading to questions concerning How the output of AI systems can be trusted? What is needed to ensure that the data fuelling and the inner workings of these artefacts are transparent? How can AI be made accountable for its decision-making? This paper conceptualises the foundational topics and research pillars to support KG-based AI for self-determination. Drawing upon this conceptual framework, challenges and opportunities for citizen self-determination are illustrated and analysed in a real-world scenario. As a result, we propose a research agenda aimed at accomplishing the recommended objectives.

Subject Classification

ACM Subject Classification
  • Social and professional topics → Computing / technology policy
  • Computing methodologies → Knowledge representation and reasoning
  • Human-centered computing → Collaborative and social computing theory, concepts and paradigms
  • Security and privacy → Human and societal aspects of security and privacy
  • Computing methodologies → Distributed artificial intelligence
Keywords
  • Trust
  • Accountability
  • Autonomy
  • AI
  • Knowledge Graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Gianmaria Ajani, Guido Boella, Luigi Di Caro, Livio Robaldo, Llio Humphreys, Sabrina Praduroux, Piercarlo Rossi, and Andrea Violato. The European Taxonomy Syllabus: A multi-lingual, multi-level ontology framework to untangle the web of European legal terminology. Applied Ontology, 11(4):325-375, 2016. URL: https://doi.org/10.3233/AO-170174.
  2. Farahnaz Akrami, Mohammed Samiul Saeef, Qingheng Zhang, Wei Hu, and Chengkai Li. Realistic re-evaluation of knowledge graph completion methods: An experimental study. In Proceedings of the 2020 International Conference on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, pages 1995-2010, 2020. URL: https://doi.org/10.1145/3318464.3380599.
  3. Tara Athan, Harold Boley, Guido Governatori, Monica Palmirani, Adrian Paschke, and Adam Wyner. Oasis legalruleml. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Law, ICAIL ’13, pages 3-12, 2013. URL: https://doi.org/10.1145/2514601.2514603.
  4. Tara Athan, Guido Governatori, Monica Palmirani, Adrian Paschke, and Adam Wyner. LegalRuleML: Design Principles and Foundations, pages 151-188. Springer International Publishing, 2015. URL: https://doi.org/10.1007/978-3-319-21768-0_6.
  5. Reyhan Aydogan and Catholijn M. Jonker. A survey of decision support mechanisms for negotiation. In Rafik Hadfi, Reyhan Aydogan, Takayuki Ito, and Ryuta Arisaka, editors, Recent Advances in Agent-Based Negotiation: Applications and Competition Challenges, ACAN@IJCAI 2022, Vienna, Austria, July 24, 2022, volume 1092 of Studies in Computational Intelligence, pages 30-51. Springer, 2022. URL: https://doi.org/10.1007/978-981-99-0561-4_3.
  6. Tim Baarslag, Michael Kaisers, Enrico H. Gerding, Catholijn M. Jonker, and Jonathan Gratch. Self-sufficient, Self-directed, and Interdependent Negotiation Systems: A Roadmap Toward Autonomous Negotiation Agents, pages 387-406. Springer International Publishing, 2022. URL: https://doi.org/10.1007/978-3-030-76666-5_18.
  7. Krisztian Balog and Tom Kenter. Personal Knowledge Graphs: A Research Agenda. In Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval, pages 217-220, sep 2019. URL: https://doi.org/10.1145/3341981.3344241.
  8. Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, 2003. URL: https://doi.org/10.1017/CBO9780511543357.
  9. Cesare Bartolini, Antonello Calabrò, and Eda Marchetti. Enhancing business process modelling with data protection compliance: An ontology-based proposal. In Paolo Mori, Steven Furnell, and Olivier Camp, editors, Proceedings of the 5th International Conference on Information Systems Security and Privacy, ICISSP 2019, Prague, Czech Republic, February 23-25, 2019, pages 421-428. SciTePress, 2019. URL: https://doi.org/10.5220/0007392304210428.
  10. Davide Basile, Claudio Di Ciccio, Valerio Goretti, and Sabrina Kirrane. Blockchain based resource governance for decentralized web environments. CoRR, abs/2301.06919, 2023. URL: https://doi.org/10.48550/ARXIV.2301.06919.
  11. Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep learning: An in-depth concurrency analysis. ACM Comput. Surv., 52(4), aug 2019. URL: https://doi.org/10.1145/3320060.
  12. Tim Berners-Lee and Mark Fischetti. Weaving the web: the past, present and future of the World Wide Web by its inventor. Orion Business Books, reprinted edition, 2000. Google Scholar
  13. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific American, 284(5):34-43, 2001. nopublisher: Scientific American, a division of Nature America, Inc. URL: http://www.jstor.org/stable/26059207.
  14. Guido Boella, Luigi Di Caro, and Valentina Leone. Semi-automatic knowledge population in a legal document management system. Artif. Intell. Law, 27(2):227-251, 2019. URL: https://doi.org/10.1007/S10506-018-9239-8.
  15. Piero Bonatti, J.L. De Coi, Daniel Olmedilla, and Luigi Sauro. A rule-based trust negotiation system. IEEE Transactions on Knowledge and Data Engineering, 22(11):1507-1520, 2010. URL: https://doi.org/10.1109/TKDE.2010.83.
  16. Grady Booch, Francesco Fabiano, Lior Horesh, Kiran Kate, Jonathan Lenchner, Nick Linck, Andrea Loreggia, Keerthiram Murugesan, Nicholas Mattei, Francesca Rossi, and Biplav Srivastava. Thinking fast and slow in AI. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 15042-15046. AAAI Press, 2021. URL: https://doi.org/10.1609/AAAI.V35I17.17765.
  17. Anna Breit, Laura Waltersdorfer, Fajar J. Ekaputra, Marta Sabou, Andreas Ekelhart, Andreea Iana, Heiko Paulheim, Jan Portisch, Artem Revenko, Annette ten Teije, and Frank van Harmelen. Combining machine learning and semantic web: A systematic mapping study. ACM Comput. Surv., mar 2023. Just Accepted. URL: https://doi.org/10.1145/3586163.
  18. Katrina Brooker. “I Was Devastated”: Tim Berners-Lee, the Man Who Created the World Wide Web, Has Some Regrets. Vanity Fair, 2018. URL: https://www.vanityfair.com/news/2018/07/the-man-who-created-the-world-wide-web-has-some-regrets.
  19. Vitalik Buterin. A next-generation smart contract and decentralized application platform. Technical Report 37, Ethereum Foundation, 2014. URL: https://cobesto.com/preview-file/whitepaper-Ethereum.pdf.
  20. Elena Cabrio, Alessio Palmero Aprosio, and Serena Villata. These are your rights - A natural language processing approach to automated RDF licenses generation. In The Semantic Web: Trends and Challenges - 11th International Conference, ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014. Proceedings, volume 8465 of Lecture Notes in Computer Science, pages 255-269, 2014. URL: https://doi.org/10.1007/978-3-319-07443-6_18.
  21. Cristian Cardellino, Serena Villata, Laura Alonso Alemany, and Elena Cabrio. Information extraction with active learning: A case study in legal text. In Alexander F. Gelbukh, editor, Computational Linguistics and Intelligent Text Processing - 16th International Conference, CICLing 2015, Cairo, Egypt, April 14-20, 2015, Proceedings, Part II, volume 9042 of Lecture Notes in Computer Science, pages 483-494. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-18117-2_36.
  22. Ilias Chalkidis, Charalampos Nikolaou, Panagiotis Soursos, and Manolis Koubarakis. Modeling and querying greek legislation using semantic web technologies. In The Semantic Web - 14th International Conference, ESWC 2017, Portorož, Slovenia, May 28 - June 1, 2017, Proceedings, Part I, pages 591-606, 2017. URL: https://doi.org/10.1007/978-3-319-58068-5_36.
  23. Shruthi Chari, Oshani Seneviratne, Daniel M. Gruen, Morgan A. Foreman, Amar K. Das, and Deborah L. McGuinness. Explanation ontology: A model of explanations for user-centered AI. In Jeff Z. Pan, Valentina A. M. Tamma, Claudia d'Amato, Krzysztof Janowicz, Bo Fu, Axel Polleres, Oshani Seneviratne, and Lalana Kagal, editors, The Semantic Web - ISWC 2020 - 19th International Semantic Web Conference, Athens, Greece, November 2-6, 2020, Proceedings, Part II, volume 12507 of Lecture Notes in Computer Science, pages 228-243. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-62466-8_15.
  24. Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling with pathways. Technical report, Google Research, 2022. URL: https://doi.org/10.48550/arXiv.2204.02311.
  25. Giovanni Luca Ciampaglia, Alexios Mantzarlis, Gregory Maus, and Filippo Menczer. Research challenges of digital misinformation: Toward a trustworthy web. AI Mag., 39(1):65-74, 2018. URL: https://doi.org/10.1609/AIMAG.V39I1.2783.
  26. A. Feder Cooper, Emanuel Moss, Benjamin Laufer, and Helen Nissenbaum. Accountability in an Algorithmic Society: Relationality, Responsibility, and Robustness in Machine Learning. In 2022 ACM Conference on Fairness, Accountability, and Transparency, pages 864-876, jun 2022. URL: https://doi.org/10.1145/3531146.3533150.
  27. Uwe Der, Stefan Jähnichen, and Jan Sürmeli. Self-sovereign identity - opportunities and challenges for the digital revolution. CoRR, abs/1712.01767, 2017. URL: https://doi.org/10.48550/arXiv.1712.01767.
  28. Johannes Dimyadi, Guido Governatori, and Robert Amor. Evaluating LegalDocML and LegalRuleML as a standard for sharing normative information in the aec/fm domain. In Proceedings of the 34th International Conference of CIB W78, volume 1, pages 637-644, 2017. URL: https://doi.org/10.24928/JC3-2017/0012.
  29. John Domingue, Aisling Third, Maria-Esther Vidal, Philipp D. Rohde, Juan Cano, Andrea Cimmino, and Ruben Verborgh. Trusting decentralised knowledge graphs and web data at the web conference. In Ying Ding, Jie Tang, Juan F. Sequeda, Lora Aroyo, Carlos Castillo, and Geert-Jan Houben, editors, Companion Proceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May 2023, pages 1422-1423. ACM, 2023. URL: https://doi.org/10.1145/3543873.3589756.
  30. Xin Luna Dong. Generations of knowledge graphs: The crazy ideas and the business impact. Proc. VLDB Endow., 16(12):4130-4137, 2023. URL: https://doi.org/10.14778/3611540.3611636.
  31. Xin Luna Dong. Generations of knowledge graphs: The crazy ideas and the business impact. CoRR, abs/2308.14217, 2023. URL: https://doi.org/10.48550/ARXIV.2308.14217.
  32. Beatriz Esteves, Harshvardhan J. Pandit, and Víctor Rodríguez-Doncel. ODRL profile for expressing consent through granular access control policies in solid. In IEEE European Symposium on Security and Privacy Workshops, EuroS&P 2021, Vienna, Austria, September 6-10, 2021, pages 298-306. IEEE, 2021. URL: https://doi.org/10.1109/EUROSPW54576.2021.00038.
  33. Enrico Francesconi. A description logic framework for advanced accessing and reasoning over normative provisions. Artif. Intell. Law, 22(3):291-311, 2014. URL: https://doi.org/10.1007/S10506-014-9158-2.
  34. Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual inversion. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL: https://openreview.net/pdf?id=NAQvF08TcyG.
  35. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Clingo = ASP + control: Preliminary report. CoRR, abs/1405.3694, 2014. URL: http://arxiv.org/abs/1405.3694, URL: https://arxiv.org/abs/1405.3694.
  36. Cindy Gordon. ChatGPT Is The Fastest Growing App In The History Of Web Applications, feb 2023. URL: https://www.forbes.com/sites/cindygordon/2023/02/02/chatgpt-is-the-fastest-growing-ap-in-the-history-of-web-applications/?sh=5cee3a30678c.
  37. Guido Governatori, Mustafa Hashmi, Ho-Pun Lam, Serena Villata, and Monica Palmirani. Semantic business process regulatory compliance checking using LegalRuleML. In Eva Blomqvist, Paolo Ciancarini, Francesco Poggi, and Fabio Vitali, editors, Knowledge Engineering and Knowledge Management - 20th International Conference, EKAW 2016, Bologna, Italy, November 19-23, 2016, Proceedings, volume 10024 of Lecture Notes in Computer Science, pages 746-761, 2016. URL: https://doi.org/10.1007/978-3-319-49004-5_48.
  38. Paul Groth, Andrew Gibson, and Jan Velterop. The anatomy of a nanopublication. Inf. Serv. Use, 30(1-2):51-56, 2010. URL: https://doi.org/10.3233/ISU-2010-0613.
  39. Susanne Guth, Gustaf Neumann, and Mark Strembeck. Experiences with the enforcement of access rights extracted from odrl-based digital contracts. In Moti Yung, editor, Proceedings of the 2003 ACM workshop on Digital rights management 2003, Washington, DC, USA, October 27, 2003, pages 90-102. ACM, 2003. URL: https://doi.org/10.1145/947380.947392.
  40. Kristian J. Hammond and David B. Leake. Large language models need symbolic AI. In Artur S. d'Avila Garcez, Tarek R. Besold, Marco Gori, and Ernesto Jiménez-Ruiz, editors, Proceedings of the 17th International Workshop on Neural-Symbolic Learning and Reasoning, La Certosa di Pontignano, Siena, Italy, July 3-5, 2023, volume 3432 of CEUR Workshop Proceedings, pages 204-209. CEUR-WS.org, 2023. URL: https://ceur-ws.org/Vol-3432/paper17.pdf.
  41. Dick Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, oct 2012. URL: https://doi.org/10.17487/RFC6749.
  42. Giray Havur, Simon Steyskal, Oleksandra Panasiuk, Anna Fensel, Víctor Mireles, Tassilo Pellegrini, Thomas Thurner, Axel Polleres, and Sabrina Kirrane. Automatic license compatibility checking. In Mehwish Alam, Ricardo Usbeck, Tassilo Pellegrini, Harald Sack, and York Sure-Vetter, editors, Proceedings of the Posters and Demo Track of the 15th International Conference on Semantic Systems co-located with 15th International Conference on Semantic Systems (SEMANTiCS 2019), Karlsruhe, Germany, September 9th - to - 12th, 2019, volume 2451 of CEUR Workshop Proceedings. CEUR-WS.org, 2019. URL: https://ceur-ws.org/Vol-2451/paper-13.pdf.
  43. Michal Robert Hoffman, Luis-Daniel Ibáñez, and Elena Simperl. Scholarly publishing on the blockchain - from smart papers to smart informetrics. Data Sci., 2(1-2):291-310, 2019. URL: https://doi.org/10.3233/DS-190018.
  44. Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S. Yu, and Xuyun Zhang. Membership inference attacks on machine learning: A survey. ACM Comput. Surv., 54(11s), sep 2022. URL: https://doi.org/10.1145/3523273.
  45. Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki, editors, Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, pages 1049-1065. Association for Computational Linguistics, 2023. URL: https://doi.org/10.18653/V1/2023.FINDINGS-ACL.67.
  46. Renato Ianella and Serena Villata. ODRL Information Model, 2018. URL: https://www.w3.org/TR/odrl-model/.
  47. Eleni Ilkou. Personal Knowledge Graphs: Use Cases in e-learning Platforms. In Companion Proceedings of the Web Conference 2022, pages 344-348, apr 2022. URL: https://doi.org/10.1145/3487553.3524196.
  48. Lalana Kagal. Rei : A Policy Language for the Me-Centric Project. Technical report, HP Labs, sep 2002. URL: http://www.hpl.hp.com/techreports/2002/HPL-2002-270.html.
  49. Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, 2011. Google Scholar
  50. Daniel Kazenoff, Oshani Seneviratne, and Deborah L. McGuinness. Semantic graph analysis to combat cryptocurrency misinformation on the web. In Manolis Koubarakis, Harith Alani, Grigoris Antoniou, Kalina Bontcheva, John G. Breslin, Diego Collarana, Elena Demidova, Stefan Dietze, Simon Gottschalk, Guido Governatori, Aidan Hogan, Freddy Lécué, Elena Montiel-Ponsoda, Axel-Cyrille Ngonga Ngomo, Sofia Pinto, Muhammad Saleem, Raphaël Troncy, Eleni Tsalapati, Ricardo Usbeck, and Ruben Verborgh, editors, Joint Proceedings of Workshops AI4LEGAL2020, NLIWOD, PROFILES 2020, QuWeDa 2020 and SEMIFORM2020 Colocated with the 19th International Semantic Web Conference (ISWC 2020), Virtual Conference, November, 2020, volume 2722 of CEUR Workshop Proceedings, pages 168-176. CEUR-WS.org, 2020. URL: https://ceur-ws.org/Vol-2722/semiform2020-paper-3.pdf.
  51. Ankesh Khandelwal, Jie Bao, Lalana Kagal, Ian Jacobi, Li Ding, and James A. Hendler. Analyzing the AIR language: A semantic web (production) rule language. In Pascal Hitzler and Thomas Lukasiewicz, editors, Web Reasoning and Rule Systems - Fourth International Conference, RR 2010, Bressanone/Brixen, Italy, September 22-24, 2010. Proceedings, volume 6333 of Lecture Notes in Computer Science, pages 58-72. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-15918-3_6.
  52. Emre Kiciman, Robert Ness, Amit Sharma, and Chenhao Tan. Causal reasoning and large language models: Opening a new frontier for causality. CoRR, abs/2305.00050, 2023. URL: https://doi.org/10.48550/ARXIV.2305.00050.
  53. Sabrina Kirrane. Intelligent software web agents: A gap analysis. Journal of Web Semantics, 71:100659, nov 2021. URL: https://doi.org/10.1016/J.WEBSEM.2021.100659.
  54. Sabrina Kirrane, Javier D. Fernández, Piero Bonatti, Uros Milosevic, Axel Polleres, and Rigo Wenning. The SPECIAL-K personal data processing transparency and compliance platform, 2021. URL: https://doi.org/10.48550/arXiv.2001.09461.
  55. Sabrina Kirrane, Alessandra Mileo, and Stefan Decker. Access control and the Resource Description Framework: A survey. Semantic Web, 8(2):311-352, dec 2016. URL: https://doi.org/10.3233/SW-160236.
  56. Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 1885-1894, 06-11 August 2017. URL: https://proceedings.mlr.press/v70/koh17a.html.
  57. Boshko Koloski, Timen Stepisnik Perdih, Marko Robnik-Sikonja, Senja Pollak, and Blaz Skrlj. Knowledge graph informed fake news classification via heterogeneous representation ensembles. Neurocomputing, 496:208-226, 2022. URL: https://doi.org/10.1016/J.NEUCOM.2022.01.096.
  58. Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-Brown. Auto-weka 2.0: Automatic model selection and hyperparameter optimization in weka. Journal of Machine Learning Research, 18(25):1-5, 2017. URL: http://jmlr.org/papers/v18/16-261.html.
  59. Ziyi Kou, Lanyu Shang, Yang Zhang, and Dong Wang. HC-COVID: A hierarchical crowdsource knowledge graph approach to explainable COVID-19 misinformation detection. Proc. ACM Hum. Comput. Interact., 6(GROUP):36:1-36:25, 2022. URL: https://doi.org/10.1145/3492855.
  60. Tahu Kukutai and Donna Cormack. “Pushing the space” Data sovereignty and self-determination in Aotearoa NZ. In Indigenous Data Sovereignty and Policy, Routledge Studies in Indigenous Peoples and Policy. Routledge, 2021. URL: https://www.taylorfrancis.com/chapters/oa-edit/10.4324/9780429273957-2/pushing-space-tahu-kukutai-donna-cormack.
  61. Freddy Lecue. On the role of knowledge graphs in explainable AI. Semantic Web, 11(1):41-51, jan 2020. URL: https://doi.org/10.3233/SW-190374.
  62. Hanzhou Li, John T Moon, Saptarshi Purkayastha, Leo Anthony Celi, Hari Trivedi, and Judy W Gichoya. Ethics of large language models in medicine and medical research. The Lancet, Digital Health, 5, 2023. URL: https://doi.org/10.1016/S2589-7500(23)00083-3.
  63. James Lighthill. Artifical Intelligence: A General Survey. Technical report, UK Science Research Council, 1974. URL: http://www.chilton-computing.org.uk/inf/literature/reports/lighthill_report/p001.htm.
  64. Lu Liu, Sicong Zhou, Huawei Huang, and Zibin Zheng. From technology to society: An overview of blockchain-based dao. IEEE Open Journal of the Computer Society, 2:204-215, 2021. URL: https://doi.org/10.1109/OJCS.2021.3072661.
  65. James H Lubowitz. Chatgpt, an artificial intelligence chatbot, is impacting medical literature. Arthroscopy, 39(5):1121-1122, 2023. URL: https://doi.org/10.1016/j.arthro.2023.01.015.
  66. George F. Luger. Modern AI and How We Got Here. In Knowing our World: An Artificial Intelligence Perspective, pages 49-74. Springer International Publishing, 2021. URL: https://doi.org/10.1007/978-3-030-71873-2_3.
  67. Essam Mansour, Andrei Vlad Sambra, Sandro Hawke, Maged Zereba, Sarven Capadisli, Abdurrahman Ghanem, Ashraf Aboulnaga, and Tim Berners-Lee. A demonstration of the solid platform for social web applications. In Jacqueline Bourdeau, Jim Hendler, Roger Nkambou, Ian Horrocks, and Ben Y. Zhao, editors, Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11-15, 2016, Companion Volume, pages 223-226. ACM, 2016. URL: https://doi.org/10.1145/2872518.2890529.
  68. Mohit Mayank, Shakshi Sharma, and Rajesh Sharma. DEAP-FAKED: knowledge graph based approach for fake news detection. In IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2022, Istanbul, Turkey, November 10-13, 2022, pages 47-51. IEEE, 2022. URL: https://doi.org/10.1109/ASONAM55673.2022.10068653.
  69. Dhruv Mehrotra. ICE Records Reveal How Agents Abuse Access to Secret Data, apr 2023. URL: https://www.wired.com/story/ice-agent-database-abuse-records.
  70. Merriam-Webster.com Dictionary. Trust. https://www.merriam-webster.com/dictionary/trust. Accessed 14 Jul. 2023.
  71. Paolo Missier, Khalid Belhajjame, and James Cheney. The W3C PROV family of specifications for modelling provenance metadata. In Giovanna Guerrini and Norman W. Paton, editors, Joint 2013 EDBT/ICDT Conferences, EDBT '13 Proceedings, Genoa, Italy, March 18-22, 2013, pages 773-776. ACM, 2013. URL: https://doi.org/10.1145/2452376.2452478.
  72. Melanie Mitchell and David C. Krakauer. The debate over understanding in ai’s large language models. Proceedings of the National Academy of Sciences, 120(13):e2215907120, 2023. URL: https://doi.org/10.1073/pnas.2215907120.
  73. Jakob Mökander, Jonas Schuett, Hannah Rose Kirk, and Luciano Floridi. Auditing large language models: a three-layered approach. AI Ethics, 2023. URL: https://doi.org/10.1007/s43681-023-00289-2.
  74. Benjamin Moreau, Patricia Serrano-Alvarado, Matthieu Perrin, and Emmanuel Desmontils. A license-based search engine. In Pascal Hitzler, Sabrina Kirrane, Olaf Hartig, Victor de Boer, Maria-Esther Vidal, Maria Maleshkova, Stefan Schlobach, Karl Hammar, Nelia Lasierra, Steffen Stadtmüller, Katja Hose, and Ruben Verborgh, editors, The Semantic Web: ESWC 2019 Satellite Events - ESWC 2019 Satellite Events, Portorož, Slovenia, June 2-6, 2019, Revised Selected Papers, volume 11762 of Lecture Notes in Computer Science, pages 130-135. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-32327-1_26.
  75. Iman Naja, Milan Markovic, Peter Edwards, and Caitlin Cottrill. A Semantic Framework to Support AI System Accountability and Audit. In The Semantic Web, volume 12731, pages 160-176. Springer International Publishing, 2021. Series Title: Lecture Notes in Computer Science. URL: https://doi.org/10.1007/978-3-030-77385-4_10.
  76. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL: https://bitcoin.org/bitcoin.pdf.
  77. María Navas-Loro and Cristiana Santos. Events in the legal domain: first impressions. In Víctor Rodríguez-Doncel, Pompeu Casanovas, Jorge González-Conejero, and Elena Montiel-Ponsoda, editors, Proceedings of the 2nd Workshop on Technologies for Regulatory Compliance co-located with the 31st International Conference on Legal Knowledge and Information Systems (JURIX 2018), Groningen, The Netherlands, December 12, 2018, volume 2309 of CEUR Workshop Proceedings, pages 45-57. CEUR-WS.org, 2018. URL: https://ceur-ws.org/Vol-2309/05.pdf.
  78. Arttu Oksanen, Minna Tamper, Jouni Tuominen, Eetu Mäkelä, Aki Hietanen, and Eero Hyvönen. Semantic Finlex: Transforming, Publishing, and Using Finnish Legislation and Case Law As Linked Open Data on the Web, volume 317 of Frontiers in Artificial Intelligence and Applications, pages 212-228. IOS Press, 2018. URL: https://doi.org/10.3233/FAIA190023.
  79. Alessandro Oltramari, Dhivya Piraviperumal, Florian Schaub, Shomir Wilson, Sushain Cherivirala, Thomas B. Norton, N. Cameron Russell, Peter Story, Joel R. Reidenberg, and Norman M. Sadeh. Privonto: A semantic framework for the analysis of privacy policies. Semantic Web, 9(2):185-203, 2018. URL: https://doi.org/10.3233/SW-170283.
  80. Monica Palmirani, Guido Governatori, Antonino Rotolo, Said Tabet, Harold Boley, and Adrian Paschke. Legalruleml: Xml-based rules and norms. In Frank Olken, Monica Palmirani, and Davide Sottara, editors, Rule-Based Modeling and Computing on the Semantic Web, 5th International Symposium, RuleML 2011- America, Ft. Lauderdale, FL, Florida, USA, November 3-5, 2011. Proceedings, volume 7018 of Lecture Notes in Computer Science, pages 298-312. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-24908-2_30.
  81. Monica Palmirani, Michele Martoni, Arianna Rossi, Cesare Bartolini, and Livio Robaldo. Legal ontology for modelling GDPR concepts and norms. In Monica Palmirani, editor, Legal Knowledge and Information Systems - JURIX 2018: The Thirty-first Annual Conference, Groningen, The Netherlands, 12-14 December 2018, volume 313 of Frontiers in Artificial Intelligence and Applications, pages 91-100. IOS Press, 2018. URL: https://doi.org/10.3233/978-1-61499-935-5-91.
  82. Monica Palmirani, Michele Martoni, Arianna Rossi, Cesare Bartolini, and Livio Robaldo. Pronto: Privacy ontology for legal reasoning. In Electronic Government and the Information Systems Perspective - 7th International Conference, EGOVIS 2018, Regensburg, Germany, September 3-5, 2018, Proceedings, volume 11032 of Lecture Notes in Computer Science, pages 139-152, 2018. URL: https://doi.org/10.1007/978-3-319-98349-3_11.
  83. Harshvardhan J. Pandit, Kaniz Fatema, Declan O'Sullivan, and Dave Lewis. Gdprtext - GDPR as a linked data resource. In The Semantic Web - 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings, pages 481-495, 2018. URL: https://doi.org/10.1007/978-3-319-93417-4_31.
  84. Eli Pariser. The filter bubble: How the new personalized web is changing what we read and how we think. Penguin, 2011. URL: https://dl.acm.org/doi/10.5555/2361740.
  85. Neoklis Polyzotis and Matei Zaharia. What can Data-Centric AI Learn from Data and ML Engineering? Arxiv, 2021. URL: https://doi.org/10.48550/ARXIV.2112.06439.
  86. Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang, and Huajun Chen. Reasoning with language model prompting: A survey. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pages 5368-5393. Association for Computational Linguistics, 2023. URL: https://doi.org/10.18653/V1/2023.ACL-LONG.294.
  87. Umair Qudus, Michael Röder, Muhammad Saleem, and Axel-Cyrille Ngonga Ngomo. Hybridfc: A hybrid fact-checking approach for knowledge graphs. In Ulrike Sattler, Aidan Hogan, C. Maria Keet, Valentina Presutti, João Paulo A. Almeida, Hideaki Takeda, Pierre Monnin, Giuseppe Pirrò, and Claudia d'Amato, editors, The Semantic Web - ISWC 2022 - 21st International Semantic Web Conference, Virtual Event, October 23-27, 2022, Proceedings, volume 13489 of Lecture Notes in Computer Science, pages 462-480. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-19433-7_27.
  88. Enayat Rajabi and Kobra Etminani. Knowledge-graph-based explainable AI: A systematic review. Journal of Information Science, page 016555152211128, sep 2022. URL: https://doi.org/10.1177/01655515221112844.
  89. Ariam Rivas, Diego Collarana, Maria Torrente, and Maria-Esther Vidal. A neuro-symbolic system over knowledge graphs for link prediction. Semantic Web journal, To appear. URL: https://www.semantic-web-journal.net/content/neuro-symbolic-system-over-knowledge-graphs-link-prediction-0.
  90. Andrea Rossi, Donatella Firmani, Paolo Merialdo, and Tommaso Teofili. Explaining link prediction systems based on knowledge graph embeddings. In SIGMOD '22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 2062-2075, 2022. URL: https://doi.org/10.1145/3514221.3517887.
  91. Andrei Vlad Sambra, Essam Mansour, Sandro Hawke, Maged Zereba, Nicola Greco, Abdurrahman Ghanem, Dmitri Zagidulin, Ashraf Aboulnaga, and Tim Berners-Lee. Solid: a platform for decentralized social applications based on linked data. Technical report, MIT CSAIL & Qatar Computing Research Institute, Tech. Rep., 2016. URL: http://emansour.com/research/lusail/solid_protocols.pdf.
  92. Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, Andreas Schwarte, and Thanh Tran. Fedbench: A benchmark suite for federated semantic data query processing. In Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Fridman Noy, and Eva Blomqvist, editors, The Semantic Web - ISWC 2011 - 10th International Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I, volume 7031 of Lecture Notes in Computer Science, pages 585-600. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-25073-6_37.
  93. John Schulman, Barret Zoph, Christina Kim, Jacob Hilton, Jacob Menick, Jiayi Weng, Juan Felipe Ceron Uribe, Liam Fedus, Luke Metz, Michael Pokorny, et al. Chatgpt: Optimizing language models for dialogue. Accessed: 23/11/2023. URL: https://openai.com/blog/chatgpt.
  94. Oshani Seneviratne. Data provenance and accountability on the web. Provenance in Data Science: From Data Models to Context-Aware Knowledge Graphs, pages 11-24, 2020. URL: https://doi.org/10.1007/978-3-030-67681-0_2.
  95. Oshani Seneviratne. Blockchain for social good: Combating misinformation on the web with AI and blockchain. In WebSci '22: 14th ACM Web Science Conference 2022, Barcelona, Spain, June 26 - 29, 2022, pages 435-442. ACM, 2022. URL: https://doi.org/10.1145/3501247.3539016.
  96. Lanyu Shang, Ziyi Kou, Yang Zhang, Jin Chen, and Dong Wang. A privacy-aware distributed knowledge graph approach to qois-driven COVID-19 misinformation detection. In 30th IEEE/ACM International Symposium on Quality of Service, IWQoS 2022, Oslo, Norway, June 10-12, 2022, pages 1-10. IEEE, 2022. URL: https://doi.org/10.1109/IWQOS54832.2022.9812879.
  97. Manan Shukla, Jianjing Lin, and Oshani Seneviratne. Blockiot: blockchain-based health data integration using iot devices. In AMIA Annual Symposium Proceedings, volume 2021, page 1119. American Medical Informatics Association, 2021. URL: https://knowledge.amia.org/74229-amia-1.4622266/t003-1.4626466/t003-1.4626467/3577334-1.4626522/3577640-1.4626519.
  98. Manan Shukla, Jianjing Lin, and Oshani Seneviratne. Blockiot-retel: Blockchain and iot based read-execute-transact-erase-loop environment for integrating personal health data. In Yang Xiang, Ziyuan Wang, Honggang Wang, and Valtteri Niemi, editors, 2021 IEEE International Conference on Blockchain, Blockchain 2021, Melbourne, Australia, December 6-8, 2021, pages 237-243. IEEE, 2021. URL: https://doi.org/10.1109/BLOCKCHAIN53845.2021.00039.
  99. Manan Shukla, Jianjing Lin, and Oshani Seneviratne. Collaboratively learning optimal patient outcomes using smart contracts in limited data settings. In IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies, CHASE 2022, Arlington, VA, USA, November 17-19, 2022, pages 133-137. IEEE, 2022. URL: https://ieeexplore.ieee.org/document/9983613.
  100. Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark, Stephen Pfohl, Heather Cole-Lewis, Darlene Neal, Mike Schaekermann, Amy Wang, Mohamed Amin, Sami Lachgar, Philip Andrew Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska, Blaise Agüera y Arcas, Nenad Tomasev, Yun Liu, Renee Wong, Christopher Semturs, S. Sara Mahdavi, Joelle K. Barral, Dale R. Webster, Gregory S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan Karthikesalingam, and Vivek Natarajan. Towards expert-level medical question answering with large language models. CoRR, abs/2305.09617, 2023. URL: https://doi.org/10.48550/ARXIV.2305.09617.
  101. Manu Sporny, Amy Guy, Markus Sabadello, Drummond Reed, Orie Steele, and Christopher Allen. Decentralized Identifiers (DIDs), 2022. URL: https://www.w3.org/TR/did-core/.
  102. Manu Sporny, David Longley, and David Chadwick. Verifiable Credentials Data Model, 2022. URL: https://www.w3.org/TR/vc-data-model/.
  103. Kai Sun, Yifan Ethan Xu, Hanwen Zha, Yue Liu, and Xin Luna Dong. Head-to-tail: How knowledgeable are large language models (llm)? A.K.A. will llms replace knowledge graphs? CoRR, abs/2308.10168, 2023. URL: https://doi.org/10.48550/ARXIV.2308.10168.
  104. Ali Sunyaev. Internet Computing - Principles of Distributed Systems and Emerging Internet-Based Technologies. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-34957-8.
  105. Nick Szabo. Formalizing and securing relationships on public networks. First Monday, 2(9), 1997. URL: https://doi.org/10.5210/FM.V2I9.548.
  106. Allan Third, George Gkotsis, Eleni Kaldoudi, George Drosatos, Nick Portokallidis, Stefanos Roumeliotis, Kalliopi Pafili, and John Domingue. Integrating medical scientific knowledge with the semantically quantified self. In Paul Groth, Elena Simperl, Alasdair J. G. Gray, Marta Sabou, Markus Krötzsch, Freddy Lécué, Fabian Flöck, and Yolanda Gil, editors, The Semantic Web - ISWC 2016 - 15th International Semantic Web Conference, Kobe, Japan, October 17-21, 2016, Proceedings, Part I, volume 9981 of Lecture Notes in Computer Science, pages 566-580, 2016. URL: https://doi.org/10.1007/978-3-319-46523-4_34.
  107. Ilaria Tiddi and Stefan Schlobach. Knowledge graphs as tools for explainable machine learning: A survey. Artificial Intelligence, 302:103627, jan 2022. URL: https://doi.org/10.1016/J.ARTINT.2021.103627.
  108. Andrzej Uszok, Jeffrey M. Bradshaw, Renia Jeffers, Niranjan Suri, Patrick J. Hayes, Maggie R. Breedy, Larry Bunch, Matt Johnson, Shriniwas Kulkarni, and James Lott. Kaos policy and domain services: Toward a description-logic approach to policy representation, deconfliction, and enforcement. In 4th IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY 2003), 4-6 June 2003, Lake Como, Italy, page 93. IEEE Computer Society, 2003. URL: https://doi.org/10.1109/POLICY.2003.1206963.
  109. Michael van Bekkum, Maaike de Boer, Frank van Harmelen, André Meyer-Vitali, and Annette ten Teije. Modular design patterns for hybrid learning and reasoning systems. Appl. Intell., 51(9):6528-6546, 2021. URL: https://doi.org/10.1007/S10489-021-02394-3.
  110. Marina De Vos, Sabrina Kirrane, Julian A. Padget, and Ken Satoh. ODRL policy modelling and compliance checking. In Paul Fodor, Marco Montali, Diego Calvanese, and Dumitru Roman, editors, Rules and Reasoning - Third International Joint Conference, RuleML+RR 2019, Bolzano, Italy, September 16-19, 2019, Proceedings, volume 11784 of Lecture Notes in Computer Science, pages 36-51. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-31095-0_3.
  111. Denny Vrandecic and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Commun. ACM, 57(10):78-85, 2014. URL: https://doi.org/10.1145/2629489.
  112. Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H. Yang, Farhad Farokhi, Shi Jin, Tony Q. S. Quek, and H. Vincent Poor. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Trans. Inf. Forensics Secur., 15:3454-3469, 2020. URL: https://doi.org/10.1109/TIFS.2020.2988575.
  113. Mika Westerlund. The emergence of deepfake technology: A review. Technology innovation management review, 9(11), 2019. URL: https://www.proquest.com/scholarly-journals/emergence-deepfake-technology-review/docview/2329154005/se-2.
  114. Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. Data collection and quality challenges in deep learning: A data-centric ai perspective. The VLDB Journal, 32(4):791-813, 2023. URL: https://doi.org/10.1007/S00778-022-00775-9.
  115. Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Technical report, Ethereum Foundation, 2014. URL: https://gavwood.com/paper.pdf.
  116. Adam Z. Wyner and Wim Peters. Lexical semantics and expert legal knowledge towards the identification of legal case factors. In Radboud Winkels, editor, Legal Knowledge and Information Systems - JURIX 2010: The Twenty-Third Annual Conference on Legal Knowledge and Information Systems, Liverpool, UK, 16-17 December 2010, volume 223 of Frontiers in Artificial Intelligence and Applications, pages 127-136. IOS Press, 2010. URL: https://doi.org/10.3233/978-1-60750-682-9-127.
  117. Guowen Xu, Hongwei Li, Yun Zhang, Shengmin Xu, Jianting Ning, and Robert H. Deng. Privacy-preserving federated deep learning with irregular users. IEEE Transactions on Dependable and Secure Computing, 19(2):1364-1381, 2022. URL: https://doi.org/10.1109/TDSC.2020.3005909.
  118. Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol., 10(2):12:1-12:19, 2019. URL: https://doi.org/10.1145/3298981.
  119. Bo Yin, Hao Yin, Yulei Wu, and Zexun Jiang. Fdc: A secure federated deep learning mechanism for data collaborations in the internet of things. IEEE Internet of Things Journal, 7(7):6348-6359, 2020. URL: https://doi.org/10.1109/JIOT.2020.2966778.
  120. Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A survey of large language models. CoRR, abs/2303.18223, 2023. URL: https://doi.org/10.48550/ARXIV.2303.18223.
  121. Jiawei Zhou, Yixuan Zhang, Qianni Luo, Andrea G. Parker, and Munmun De Choudhury. Synthetic lies: Understanding ai-generated misinformation and evaluating algorithmic and human solutions. In Albrecht Schmidt, Kaisa Väänänen, Tesh Goyal, Per Ola Kristensson, Anicia Peters, Stefanie Mueller, Julie R. Williamson, and Max L. Wilson, editors, Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, CHI 2023, Hamburg, Germany, April 23-28, 2023, pages 436:1-436:20. ACM, 2023. URL: https://doi.org/10.1145/3544548.3581318.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail