Computer Science > Data Structures and Algorithms
[Submitted on 3 Apr 2013 (v1), last revised 11 Apr 2013 (this version, v2)]
Title:How to Approximate A Set Without Knowing Its Size In Advance
View PDFAbstract:The dynamic approximate membership problem asks to represent a set S of size n, whose elements are provided in an on-line fashion, supporting membership queries without false negatives and with a false positive rate at most epsilon. That is, the membership algorithm must be correct on each x in S, and may err with probability at most epsilon on each x not in S.
We study a well-motivated, yet insufficiently explored, variant of this problem where the size n of the set is not known in advance. Existing optimal approximate membership data structures require that the size is known in advance, but in many practical scenarios this is not a realistic assumption. Moreover, even if the eventual size n of the set is known in advance, it is desirable to have the smallest possible space usage also when the current number of inserted elements is smaller than n. Our contribution consists of the following results:
- We show a super-linear gap between the space complexity when the size is known in advance and the space complexity when the size is not known in advance.
- We show that our space lower bound is tight, and can even be matched by a highly efficient data structure.
Submission history
From: Rasmus Pagh [view email][v1] Wed, 3 Apr 2013 21:07:05 UTC (26 KB)
[v2] Thu, 11 Apr 2013 04:12:45 UTC (26 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.