Computer Science > Machine Learning
[Submitted on 27 May 2014]
Title:Large Scale, Large Margin Classification using Indefinite Similarity Measures
View PDFAbstract:Despite the success of the popular kernelized support vector machines, they have two major limitations: they are restricted to Positive Semi-Definite (PSD) kernels, and their training complexity scales at least quadratically with the size of the data. Many natural measures of similarity between pairs of samples are not PSD e.g. invariant kernels, and those that are implicitly or explicitly defined by latent variable models. In this paper, we investigate scalable approaches for using indefinite similarity measures in large margin frameworks. In particular we show that a normalization of similarity to a subset of the data points constitutes a representation suitable for linear classifiers. The result is a classifier which is competitive to kernelized SVM in terms of accuracy, despite having better training and test time complexities. Experimental results demonstrate that on CIFAR-10 dataset, the model equipped with similarity measures invariant to rigid and non-rigid deformations, can be made more than 5 times sparser while being more accurate than kernelized SVM using RBF kernels.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.