Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Oct 2016 (v1), last revised 27 Mar 2018 (this version, v4)]
Title:To Frontalize or Not To Frontalize: Do We Really Need Elaborate Pre-processing To Improve Face Recognition?
View PDFAbstract:Face recognition performance has improved remarkably in the last decade. Much of this success can be attributed to the development of deep learning techniques such as convolutional neural networks (CNNs). While CNNs have pushed the state-of-the-art forward, their training process requires a large amount of clean and correctly labelled training data. If a CNN is intended to tolerate facial pose, then we face an important question: should this training data be diverse in its pose distribution, or should face images be normalized to a single pose in a pre-processing step? To address this question, we evaluate a number of popular facial landmarking and pose correction algorithms to understand their effect on facial recognition performance. Additionally, we introduce a new, automatic, single-image frontalization scheme that exceeds the performance of current algorithms. CNNs trained using sets of different pre-processing methods are used to extract features from the Point and Shoot Challenge (PaSC) and CMU Multi-PIE datasets. We assert that the subsequent verification and recognition performance serves to quantify the effectiveness of each pose correction scheme.
Submission history
From: Joel Brogan Joel R Brogan [view email][v1] Sun, 16 Oct 2016 06:17:47 UTC (3,485 KB)
[v2] Fri, 21 Apr 2017 19:38:13 UTC (2,459 KB)
[v3] Mon, 19 Mar 2018 20:59:31 UTC (6,850 KB)
[v4] Tue, 27 Mar 2018 20:08:41 UTC (6,850 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.