Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 Jan 2019]
Title:Adaptive Feature Processing for Robust Human Activity Recognition on a Novel Multi-Modal Dataset
View PDFAbstract:Human Activity Recognition (HAR) is a key building block of many emerging applications such as intelligent mobility, sports analytics, ambient-assisted living and human-robot interaction. With robust HAR, systems will become more human-aware, leading towards much safer and empathetic autonomous systems. While human pose detection has made significant progress with the dawn of deep convolutional neural networks (CNNs), the state-of-the-art research has almost exclusively focused on a single sensing modality, especially video. However, in safety critical applications it is imperative to utilize multiple sensor modalities for robust operation. To exploit the benefits of state-of-the-art machine learning techniques for HAR, it is extremely important to have multimodal datasets. In this paper, we present a novel, multi-modal sensor dataset that encompasses nine indoor activities, performed by 16 participants, and captured by four types of sensors that are commonly used in indoor applications and autonomous vehicles. This multimodal dataset is the first of its kind to be made openly available and can be exploited for many applications that require HAR, including sports analytics, healthcare assistance and indoor intelligent mobility. We propose a novel data preprocessing algorithm to enable adaptive feature extraction from the dataset to be utilized by different machine learning algorithms. Through rigorous experimental evaluations, this paper reviews the performance of machine learning approaches to posture recognition, and analyses the robustness of the algorithms. When performing HAR with the RGB-Depth data from our new dataset, machine learning algorithms such as a deep neural network reached a mean accuracy of up to 96.8% for classification across all stationary and dynamic activities
Submission history
From: Varuna De Silva D [view email][v1] Wed, 9 Jan 2019 18:25:14 UTC (1,874 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.