Computer Science > Social and Information Networks
[Submitted on 28 Jan 2019 (v1), last revised 11 May 2019 (this version, v3)]
Title:Heterogeneous Network Motifs
View PDFAbstract:Many real-world applications give rise to large heterogeneous networks where nodes and edges can be of any arbitrary type (e.g., user, web page, location). Special cases of such heterogeneous graphs include homogeneous graphs, bipartite, k-partite, signed, labeled graphs, among many others. In this work, we generalize the notion of network motifs to heterogeneous networks. In particular, small induced typed subgraphs called typed graphlets (heterogeneous network motifs) are introduced and shown to be the fundamental building blocks of complex heterogeneous networks. Typed graphlets are a powerful generalization of the notion of graphlet (network motif) to heterogeneous networks as they capture both the induced subgraph of interest and the types associated with the nodes in the induced subgraph. To address this problem, we propose a fast, parallel, and space-efficient framework for counting typed graphlets in large networks. We discover the existence of non-trivial combinatorial relationships between lower-order ($k-1$)-node typed graphlets and leverage them for deriving many of the $k$-node typed graphlets in $o(1)$ constant time. Thus, we avoid explicit enumeration of those typed graphlets. Notably, the time complexity matches the best untyped graphlet counting algorithm. The experiments demonstrate the effectiveness of the proposed framework in terms of runtime, space-efficiency, parallel speedup, and scalability as it is able to handle large-scale networks.
Submission history
From: Ryan Rossi [view email][v1] Mon, 28 Jan 2019 22:49:42 UTC (928 KB)
[v2] Mon, 4 Feb 2019 18:32:30 UTC (816 KB)
[v3] Sat, 11 May 2019 02:10:43 UTC (816 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.