Mathematics > Combinatorics
[Submitted on 11 Jun 2019 (v1), last revised 2 Sep 2020 (this version, v3)]
Title:Neural network identifiability for a family of sigmoidal nonlinearities
View PDFAbstract:This paper addresses the following question of neural network identifiability: Does the input-output map realized by a feed-forward neural network with respect to a given nonlinearity uniquely specify the network architecture, weights, and biases? Existing literature on the subject Sussman 1992, Albertini, Sontag et al. 1993, Fefferman 1994 suggests that the answer should be yes, up to certain symmetries induced by the nonlinearity, and provided the networks under consideration satisfy certain "genericity conditions". The results in Sussman 1992 and Albertini, Sontag et al. 1993 apply to networks with a single hidden layer and in Fefferman 1994 the networks need to be fully connected. In an effort to answer the identifiability question in greater generality, we derive necessary genericity conditions for the identifiability of neural networks of arbitrary depth and connectivity with an arbitrary nonlinearity. Moreover, we construct a family of nonlinearities for which these genericity conditions are minimal, i.e., both necessary and sufficient. This family is large enough to approximate many commonly encountered nonlinearities to within arbitrary precision in the uniform norm.
Submission history
From: Verner Vlačić [view email][v1] Tue, 11 Jun 2019 14:48:11 UTC (482 KB)
[v2] Tue, 25 Jun 2019 13:13:26 UTC (482 KB)
[v3] Wed, 2 Sep 2020 08:15:05 UTC (482 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.