Computer Science > Machine Learning
[Submitted on 16 Aug 2019 (v1), last revised 1 Sep 2019 (this version, v2)]
Title:Federated Learning with Additional Mechanisms on Clients to Reduce Communication Costs
View PDFAbstract:Federated learning (FL) enables on-device training over distributed networks consisting of a massive amount of modern smart devices, such as smartphones and IoT (Internet of Things) devices. However, the leading optimization algorithm in such settings, i.e., federated averaging (FedAvg), suffers from heavy communication costs and the inevitable performance drop, especially when the local data is distributed in a non-IID way. To alleviate this problem, we propose two potential solutions by introducing additional mechanisms to the on-device training.
The first (FedMMD) is adopting a two-stream model with the MMD (Maximum Mean Discrepancy) constraint instead of a single model in vanilla FedAvg to be trained on devices. Experiments show that the proposed method outperforms baselines, especially in non-IID FL settings, with a reduction of more than 20% in required communication rounds.
The second is FL with feature fusion (FedFusion). By aggregating the features from both the local and global models, we achieve higher accuracy at fewer communication costs. Furthermore, the feature fusion modules offer better initialization for newly incoming clients and thus speed up the process of convergence. Experiments in popular FL scenarios show that our FedFusion outperforms baselines in both accuracy and generalization ability while reducing the number of required communication rounds by more than 60%.
Submission history
From: Xin Yao [view email][v1] Fri, 16 Aug 2019 08:51:27 UTC (778 KB)
[v2] Sun, 1 Sep 2019 16:33:58 UTC (795 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.