Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Feb 2020 (v1), last revised 13 Nov 2020 (this version, v3)]
Title:Amplifying The Uncanny
View PDFAbstract:Deep neural networks have become remarkably good at producing realistic deepfakes, images of people that (to the untrained eye) are indistinguishable from real images. Deepfakes are produced by algorithms that learn to distinguish between real and fake images and are optimised to generate samples that the system deems realistic. This paper, and the resulting series of artworks Being Foiled explore the aesthetic outcome of inverting this process, instead optimising the system to generate images that it predicts as being fake. This maximises the unlikelihood of the data and in turn, amplifies the uncanny nature of these machine hallucinations.
Submission history
From: Terence Broad [view email][v1] Mon, 17 Feb 2020 11:12:39 UTC (2,975 KB)
[v2] Mon, 4 May 2020 16:49:55 UTC (3,003 KB)
[v3] Fri, 13 Nov 2020 13:18:10 UTC (778 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.