Mathematics > Optimization and Control
[Submitted on 26 Aug 2020 (v1), last revised 18 Oct 2021 (this version, v4)]
Title:Variance-Reduced Splitting Schemes for Monotone Stochastic Generalized Equations
View PDFAbstract:We consider monotone inclusion problems where the operators may be expectation-valued, a class of problems that subsumes convex stochastic optimization problems as well as subclasses of stochastic variational inequality and equilibrium problems. A direct application of splitting schemes is complicated by the need to resolve problems with expectation-valued maps at each step, a concern that is addressed by using sampling. Accordingly, we propose an avenue for addressing uncertainty in the mapping: Variance-reduced stochastic modified forward-backward splitting scheme (vr-SMFBS). In constrained settings, we consider structured settings when the map can be decomposed into an expectation-valued map A and a maximal monotone map B with a tractable resolvent. We show that the proposed schemes are equipped with a.s. convergence guarantees, linear (strongly monotone A) and O(1/k) (monotone A) rates of convergence while achieving optimal oracle complexity bounds. The rate statements in monotone regimes appear to be amongst the first and rely on leveraging the Fitzpatrick gap function for monotone inclusions. Furthermore, the schemes rely on weaker moment requirements on noise and allow for weakening unbiasedness requirements on oracles in strongly monotone regimes. Preliminary numerics on a class of two-stage stochastic variational inequality problems reflect these findings and show that the variance-reduced schemes outperform stochastic approximation schemes and sample-average approximation approaches. The benefits of attaining deterministic rates of convergence become even more salient when resolvent computation is expensive.
Submission history
From: Shisheng Cui [view email][v1] Wed, 26 Aug 2020 02:33:27 UTC (455 KB)
[v2] Sun, 20 Dec 2020 00:28:38 UTC (461 KB)
[v3] Mon, 11 Oct 2021 06:14:36 UTC (145 KB)
[v4] Mon, 18 Oct 2021 01:54:49 UTC (144 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.