Mathematics > Numerical Analysis
[Submitted on 23 Dec 2020]
Title:Lower bounds for the number of random bits in Monte Carlo algorithms
View PDFAbstract:We continue the study of restricted Monte Carlo algorithms in a general setting. Here we show a lower bound for minimal errors in the setting with finite restriction in terms of deterministic minimal errors. This generalizes a result of Heinrich, Novak, and Pfeiffer, 2004 to the adaptive setting. As a consequence, the lower bounds on the number of random bits from that paper also hold in this setting. We also derive a lower bound on the number of needed bits for integration of Lipschitz functions over the Wiener space, complementing a result of Giles, Hefter, Mayer, and Ritter, arXiv:1808.10623.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.