Computer Science > Social and Information Networks
[Submitted on 26 Feb 2021]
Title:Contact Tracing: Computational Bounds, Limitations and Implications
View PDFAbstract:Contact tracing has been extensively studied from different perspectives in recent years. However, there is no clear indication of why this intervention has proven effective in some epidemics (SARS) and mostly ineffective in some others (COVID-19). Here, we perform an exhaustive evaluation of random testing and contact tracing on novel superspreading random networks to try to identify which epidemics are more containable with such measures. We also explore the suitability of positive rates as a proxy of the actual infection statuses of the population. Moreover, we propose novel ideal strategies to explore the potential limits of both testing and tracing strategies. Our study counsels caution, both at assuming epidemic containment and at inferring the actual epidemic progress, with current testing or tracing strategies. However, it also brings a ray of light for the future, with the promise of the potential of novel testing strategies that can achieve great effectiveness.
Current browse context:
cs.SI
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.