Mathematics > Numerical Analysis
[Submitted on 1 Mar 2022 (v1), last revised 15 Jul 2022 (this version, v2)]
Title:High order geometric methods with splines: an analysis of discrete Hodge--star operators
View PDFAbstract:A new kind of spline geometric method approach is presented. Its main ingredient is the use of well established spline spaces forming a discrete de Rham complex to construct a primal sequence $\{X^k_h\}^n_{k=0}$, starting from splines of degree $p$, and a dual sequence $\{\tilde{X}^k_h\}_{k=0}^n$, starting from splines of degree $p-1$. By imposing homogeneous boundary conditions to the spaces of the primal sequence, the two sequences can be isomorphically mapped into one another. Within this setup, many familiar second order partial differential equations can be finally accommodated by explicitly constructing appropriate discrete versions of constitutive relations, called Hodge--star operators. Several alternatives based on both global and local projection operators between spline spaces will be proposed. The appeal of the approach with respect to similar published methods is twofold: firstly, it exhibits high order convergence. Secondly, it does not rely on the geometric realization of any (topologically) dual mesh. Several numerical examples in various space dimensions will be employed to validate the central ideas of the proposed approach and compare its features with the standard Galerkin approach in Isogeometric Analysis.
Submission history
From: Bernard Kapidani [view email][v1] Tue, 1 Mar 2022 17:02:28 UTC (415 KB)
[v2] Fri, 15 Jul 2022 08:51:45 UTC (5,084 KB)
Current browse context:
math.NA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.