Computer Science > Robotics
[Submitted on 1 Mar 2022]
Title:Task-grasping from human demonstration
View PDFAbstract:A challenge in robot grasping is to achieve task-grasping which is to select a grasp that is advantageous to the success of tasks before and after grasps. One of the frameworks to address this difficulty is Learning-from-Observation (LfO), which obtains various hints from human demonstrations. This paper solves three issues in the grasping skills in the LfO framework: 1) how to functionally mimic human-demonstrated grasps to robots with limited grasp capability, 2) how to coordinate grasp skills with reaching body mimicking, 3) how to robustly perform grasps under object pose and shape uncertainty. A deep reinforcement learning using contact-web based rewards and domain randomization of approach directions is proposed to achieve such robust mimicked grasping skills. Experiment results show that the trained grasping skills can be applied in an LfO system and executed on a real robot. In addition, it is shown that the trained skill is robust to errors in the object pose and to the uncertainty of the object shape and can be combined with various reach-coordination.
Submission history
From: Kazuhiro Sasabuchi [view email][v1] Tue, 1 Mar 2022 20:38:41 UTC (4,427 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.