Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Mar 2022]
Title:Curriculum-style Local-to-global Adaptation for Cross-domain Remote Sensing Image Segmentation
View PDFAbstract:Although domain adaptation has been extensively studied in natural image-based segmentation task, the research on cross-domain segmentation for very high resolution (VHR) remote sensing images (RSIs) still remains underexplored. The VHR RSIs-based cross-domain segmentation mainly faces two critical challenges: 1) Large area land covers with many diverse object categories bring severe local patch-level data distribution deviations, thus yielding different adaptation difficulties for different local patches; 2) Different VHR sensor types or dynamically changing modes cause the VHR images to go through intensive data distribution differences even for the same geographical location, resulting in different global feature-level domain gap. To address these challenges, we propose a curriculum-style local-to-global cross-domain adaptation framework for the segmentation of VHR RSIs. The proposed curriculum-style adaptation performs the adaptation process in an easy-to-hard way according to the adaptation difficulties that can be obtained using an entropy-based score for each patch of the target domain, and thus well aligns the local patches in a domain image. The proposed local-to-global adaptation performs the feature alignment process from the locally semantic to globally structural feature discrepancies, and consists of a semantic-level domain classifier and an entropy-level domain classifier that can reduce the above cross-domain feature discrepancies. Extensive experiments have been conducted in various cross-domain scenarios, including geographic location variations and imaging mode variations, and the experimental results demonstrate that the proposed method can significantly boost the domain adaptability of segmentation networks for VHR RSIs. Our code is available at: this https URL.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.