Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 14 Mar 2022]
Title:CAROL: Confidence-Aware Resilience Model for Edge Federations
View PDFAbstract:In recent years, the deployment of large-scale Internet of Things (IoT) applications has given rise to edge federations that seamlessly interconnect and leverage resources from multiple edge service providers. The requirement of supporting both latency-sensitive and compute-intensive IoT tasks necessitates service resilience, especially for the broker nodes in typical broker-worker deployment designs. Existing fault-tolerance or resilience schemes often lack robustness and generalization capability in non-stationary workload settings. This is typically due to the expensive periodic fine-tuning of models required to adapt them in dynamic scenarios. To address this, we present a confidence aware resilience model, CAROL, that utilizes a memory-efficient generative neural network to predict the Quality of Service (QoS) for a future state and a confidence score for each prediction. Thus, whenever a broker fails, we quickly recover the system by executing a local-search over the broker-worker topology space and optimize future QoS. The confidence score enables us to keep track of the prediction performance and run parsimonious neural network fine-tuning to avoid excessive overheads, further improving the QoS of the system. Experiments on a Raspberry-Pi based edge testbed with IoT benchmark applications show that CAROL outperforms state-of-the-art resilience schemes by reducing the energy consumption, deadline violation rates and resilience overheads by up to 16, 17 and 36 percent, respectively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.