Computer Science > Machine Learning
[Submitted on 18 Mar 2022 (v1), last revised 11 Apr 2023 (this version, v3)]
Title:Representative Subset Selection for Efficient Fine-Tuning in Self-Supervised Speech Recognition
View PDFAbstract:Self-supervised speech recognition models require considerable labeled training data for learning high-fidelity representations for Automatic Speech Recognition (ASR) which is computationally demanding and time-consuming. We consider the task of identifying an optimal subset of data for efficient fine-tuning in self-supervised speech models for ASR. We discover that the dataset pruning strategies used in vision tasks for sampling the most informative examples do not perform better than random subset selection on fine-tuning self-supervised ASR. We then present the COWERAGE algorithm for representative subset selection in self-supervised ASR. COWERAGE is based on our finding that ensuring the coverage of examples based on training Word Error Rate (WER) in the early training epochs leads to better generalization performance. Extensive experiments with the wav2vec 2.0 and HuBERT model on TIMIT, Librispeech, and LJSpeech datasets show the effectiveness of COWERAGE and its transferability across models, with up to 17% relative WER improvement over existing dataset pruning methods and random sampling. We also demonstrate that the coverage of training instances in terms of WER values ensures the inclusion of phonemically diverse examples, leading to better test accuracy in self-supervised speech recognition models.
Submission history
From: Abdul Hameed Azeemi [view email][v1] Fri, 18 Mar 2022 10:12:24 UTC (3,977 KB)
[v2] Fri, 24 Jun 2022 17:46:32 UTC (5,733 KB)
[v3] Tue, 11 Apr 2023 18:13:48 UTC (3,695 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.