Computer Science > Cryptography and Security
[Submitted on 18 Mar 2022]
Title:Botnets Breaking Transformers: Localization of Power Botnet Attacks Against the Distribution Grid
View PDFAbstract:Traditional botnet attacks leverage large and distributed numbers of compromised internet-connected devices to target and overwhelm other devices with internet packets. With increasing consumer adoption of high-wattage internet-facing "smart devices", a new "power botnet" attack emerges, where such devices are used to target and overwhelm power grid devices with unusual load demand. We introduce a variant of this attack, the power-botnet weardown-attack, which does not intend to cause blackouts or short-term acute instability, but instead forces expensive mechanical components to activate more frequently, necessitating costly replacements / repairs. Specifically, we target the on-load tap-changer (OLTC) transformer, which uses a mechanical switch that responds to change in load demand. In our analysis and simulations, these attacks can halve the lifespan of an OLTC, or in the most extreme cases, reduce it to $2.5\%$ of its original lifespan. Notably, these power botnets are composed of devices not connected to the internal SCADA systems used to control power grids. This represents a new internet-based cyberattack that targets the power grid from the outside. To help the power system to mitigate these types of botnet attacks, we develop attack-localization strategies. We formulate the problem as a supervised machine learning task to locate the source of power botnet attacks. Within a simulated environment, we generate the training and testing dataset to evaluate several machine learning algorithm based localization methods, including SVM, neural network and decision tree. We show that decision-tree based classification successfully identifies power botnet attacks and locates compromised devices with at least $94\%$ improvement of accuracy over a baseline "most-frequent" classifier.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.