Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Mar 2022 (v1), last revised 4 Oct 2022 (this version, v2)]
Title:A Binary Characterization Method for Shape Convexity and Applications
View PDFAbstract:Convexity prior is one of the main cue for human vision and shape completion with important applications in image processing, computer vision. This paper focuses on characterization methods for convex objects and applications in image processing. We present a new method for convex objects representations using binary functions, that is, the convexity of a region is equivalent to a simple quadratic inequality constraint on its indicator function. Models are proposed firstly by incorporating this result for image segmentation with convexity prior and convex hull computation of a given set with and without noises. Then, these models are summarized to a general optimization problem on binary function(s) with the quadratic inequality. Numerical algorithm is proposed based on linearization technique, where the linearized problem is solved by a proximal alternating direction method of multipliers with guaranteed convergent. Numerical experiments demonstrate the efficiency and effectiveness of the proposed methods for image segmentation and convex hull computation in accuracy and computing time.
Submission history
From: Jinfeng Chen [view email][v1] Tue, 22 Mar 2022 00:05:19 UTC (17,987 KB)
[v2] Tue, 4 Oct 2022 07:08:33 UTC (15,667 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.