Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Mar 2022 (v1), last revised 20 Jul 2022 (this version, v2)]
Title:Fine-Grained Scene Graph Generation with Data Transfer
View PDFAbstract:Scene graph generation (SGG) is designed to extract (subject, predicate, object) triplets in images. Recent works have made a steady progress on SGG, and provide useful tools for high-level vision and language understanding. However, due to the data distribution problems including long-tail distribution and semantic ambiguity, the predictions of current SGG models tend to collapse to several frequent but uninformative predicates (e.g., on, at), which limits practical application of these models in downstream tasks. To deal with the problems above, we propose a novel Internal and External Data Transfer (IETrans) method, which can be applied in a plug-and-play fashion and expanded to large SGG with 1,807 predicate classes. Our IETrans tries to relieve the data distribution problem by automatically creating an enhanced dataset that provides more sufficient and coherent annotations for all predicates. By training on the enhanced dataset, a Neural Motif model doubles the macro performance while maintaining competitive micro performance. The code and data are publicly available at this https URL.
Submission history
From: Ao Zhang [view email][v1] Tue, 22 Mar 2022 12:26:56 UTC (4,611 KB)
[v2] Wed, 20 Jul 2022 08:25:56 UTC (5,715 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.