Computer Science > Machine Learning
[Submitted on 22 Mar 2022]
Title:Exploring Linear Feature Disentanglement For Neural Networks
View PDFAbstract:Non-linear activation functions, e.g., Sigmoid, ReLU, and Tanh, have achieved great success in neural networks (NNs). Due to the complex non-linear characteristic of samples, the objective of those activation functions is to project samples from their original feature space to a linear separable feature space. This phenomenon ignites our interest in exploring whether all features need to be transformed by all non-linear functions in current typical NNs, i.e., whether there exists a part of features arriving at the linear separable feature space in the intermediate layers, that does not require further non-linear variation but an affine transformation instead. To validate the above hypothesis, we explore the problem of linear feature disentanglement for neural networks in this paper. Specifically, we devise a learnable mask module to distinguish between linear and non-linear features. Through our designed experiments we found that some features reach the linearly separable space earlier than the others and can be detached partly from the NNs. The explored method also provides a readily feasible pruning strategy which barely affects the performance of the original model. We conduct our experiments on four datasets and present promising results.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.