Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Mar 2022]
Title:Relaxation Labeling Meets GANs: Solving Jigsaw Puzzles with Missing Borders
View PDFAbstract:This paper proposes JiGAN, a GAN-based method for solving Jigsaw puzzles with eroded or missing borders. Missing borders is a common real-world situation, for example, when dealing with the reconstruction of broken artifacts or ruined frescoes. In this particular condition, the puzzle's pieces do not align perfectly due to the borders' gaps; in this situation, the patches' direct match is unfeasible due to the lack of color and line continuations. JiGAN, is a two-steps procedure that tackles this issue: first, we repair the eroded borders with a GAN-based image extension model and measure the alignment affinity between pieces; then, we solve the puzzle with the relaxation labeling algorithm to enforce consistency in pieces positioning, hence, reconstructing the puzzle. We test the method on a large dataset of small puzzles and on three commonly used benchmark datasets to demonstrate the feasibility of the proposed approach.
Submission history
From: Sebastiano Vascon Mr [view email][v1] Mon, 28 Mar 2022 00:38:17 UTC (1,808 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.