Statistics > Machine Learning
[Submitted on 29 Mar 2022 (v1), last revised 24 May 2024 (this version, v3)]
Title:Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data
View PDFAbstract:Constraint-based causal discovery methods leverage conditional independence tests to infer causal relationships in a wide variety of applications. Just as the majority of machine learning methods, existing work focuses on studying $\textit{independent and identically distributed}$ data. However, it is known that even with infinite i.i.d.$\ $ data, constraint-based methods can only identify causal structures up to broad Markov equivalence classes, posing a fundamental limitation for causal discovery. In this work, we observe that exchangeable data contains richer conditional independence structure than i.i.d.$\ $ data, and show how the richer structure can be leveraged for causal discovery. We first present causal de Finetti theorems, which state that exchangeable distributions with certain non-trivial conditional independences can always be represented as $\textit{independent causal mechanism (ICM)}$ generative processes. We then present our main identifiability theorem, which shows that given data from an ICM generative process, its unique causal structure can be identified through performing conditional independence tests. We finally develop a causal discovery algorithm and demonstrate its applicability to inferring causal relationships from multi-environment data. Our code and models are publicly available at: this https URL
Submission history
From: Siyuan Guo [view email][v1] Tue, 29 Mar 2022 17:10:39 UTC (110 KB)
[v2] Wed, 30 Nov 2022 13:07:08 UTC (152 KB)
[v3] Fri, 24 May 2024 12:12:57 UTC (514 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.