Computer Science > Cryptography and Security
[Submitted on 3 Apr 2022]
Title:Towards Web Phishing Detection Limitations and Mitigation
View PDFAbstract:Web phishing remains a serious cyber threat responsible for most data breaches. Machine Learning (ML)-based anti-phishing detectors are seen as an effective countermeasure, and are increasingly adopted by web-browsers and software products. However, with an average of 10K phishing links reported per hour to platforms such as PhishTank and VirusTotal (VT), the deficiencies of such ML-based solutions are laid bare. We first explore how phishing sites bypass ML-based detection with a deep dive into 13K phishing pages targeting major brands such as Facebook. Results show successful evasion is caused by: (1) use of benign services to obscure phishing URLs; (2) high similarity between the HTML structures of phishing and benign pages; (3) hiding the ultimate phishing content within Javascript and running such scripts only on the client; (4) looking beyond typical credentials and credit cards for new content such as IDs and documents; (5) hiding phishing content until after human interaction. We attribute the root cause to the dependency of ML-based models on the vertical feature space (webpage content). These solutions rely only on what phishers present within the page itself. Thus, we propose Anti-SubtlePhish, a more resilient model based on logistic regression. The key augmentation is the inclusion of a horizontal feature space, which examines correlation variables between the final render of suspicious pages against what trusted services have recorded (e.g., PageRank). To defeat (1) and (2), we correlate information between WHOIS, PageRank, and page analytics. To combat (3), (4) and (5), we correlate features after rendering the page. Experiments with 100K phishing/benign sites show promising accuracy (98.8%). We also obtained 100% accuracy against 0-day phishing pages that were manually crafted, comparing well to the 0% recorded by VT vendors over the first four days.
Submission history
From: Alsharif Abuadbba Dr [view email][v1] Sun, 3 Apr 2022 04:26:04 UTC (1,315 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.