Electrical Engineering and Systems Science > Systems and Control
[Submitted on 8 Apr 2022 (v1), last revised 27 Oct 2022 (this version, v2)]
Title:Deep-Learning-Based Identification of LPV Models for Nonlinear Systems
View PDFAbstract:The Linear Parameter-Varying (LPV) framework provides a modeling and control design toolchain to address nonlinear (NL) system behavior via linear surrogate models. Despite major research effort on LPV data-driven modeling, a key shortcoming of the current identification theory is that often the scheduling variable is assumed to be a given measured signal in the data set. In case of identifying an LPV model of a NL system, the selection of the scheduling map, which describes the relation to the measurable scheduling signal, is put on the users' shoulder, with only limited supporting tools available. This choice however greatly affects the usability and complexity of the resulting LPV model. This paper presents a deep-learning-based approach to provide joint estimation of a scheduling map and an LPV state-space model of a NL system from input-output data, and has consistency guarantees under general innovation-type noise conditions. Its efficiency is demonstrated on a realistic identification problem.
Submission history
From: Chris Verhoek [view email][v1] Fri, 8 Apr 2022 13:26:05 UTC (1,532 KB)
[v2] Thu, 27 Oct 2022 07:40:33 UTC (1,388 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.