Computer Science > Machine Learning
[Submitted on 26 Apr 2022 (v1), last revised 2 Jun 2024 (this version, v3)]
Title:PyGOD: A Python Library for Graph Outlier Detection
View PDF HTML (experimental)Abstract:PyGOD is an open-source Python library for detecting outliers in graph data. As the first comprehensive library of its kind, PyGOD supports a wide array of leading graph-based methods for outlier detection under an easy-to-use, well-documented API designed for use by both researchers and practitioners. PyGOD provides modularized components of the different detectors implemented so that users can easily customize each detector for their purposes. To ease the construction of detection workflows, PyGOD offers numerous commonly used utility functions. To scale computation to large graphs, PyGOD supports functionalities for deep models such as sampling and mini-batch processing. PyGOD uses best practices in fostering code reliability and maintainability, including unit testing, continuous integration, and code coverage. To facilitate accessibility, PyGOD is released under a BSD 2-Clause license at this https URL and at the Python Package Index (PyPI).
Submission history
From: Kay Liu [view email][v1] Tue, 26 Apr 2022 06:15:21 UTC (296 KB)
[v2] Sun, 17 Mar 2024 19:37:05 UTC (390 KB)
[v3] Sun, 2 Jun 2024 04:38:45 UTC (390 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.