Computer Science > Computation and Language
[Submitted on 29 Apr 2022 (v1), last revised 4 Nov 2022 (this version, v2)]
Title:Polyglot Prompt: Multilingual Multitask PrompTraining
View PDFAbstract:This paper aims for a potential architectural improvement for multilingual learning and asks: Can different tasks from different languages be modeled in a monolithic framework, i.e. without any task/language-specific module? The benefit of achieving this could open new doors for future multilingual research, including allowing systems trained on low resources to be further assisted by other languages as well as other tasks. We approach this goal by developing a learning framework named Polyglot Prompting to exploit prompting methods for learning a unified semantic space for different languages and tasks with multilingual prompt engineering. We performed a comprehensive evaluation of 6 tasks, namely topic classification, sentiment classification, named entity recognition, question answering, natural language inference, and summarization, covering 24 datasets and 49 languages. The experimental results demonstrated the efficacy of multilingual multitask prompt-based learning and led to inspiring observations. We also present an interpretable multilingual evaluation methodology and show how the proposed framework, multilingual multitask prompt training, works. We release all datasets prompted in the best setting and code.
Submission history
From: Jinlan Fu [view email][v1] Fri, 29 Apr 2022 17:40:50 UTC (611 KB)
[v2] Fri, 4 Nov 2022 06:01:05 UTC (1,688 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.