Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 May 2022]
Title:Design equivariant neural networks for 3D point cloud
View PDFAbstract:This work seeks to improve the generalization and robustness of existing neural networks for 3D point clouds by inducing group equivariance under general group transformations. The main challenge when designing equivariant models for point clouds is how to trade-off the performance of the model and the complexity. Existing equivariant models are either too complicate to implement or very high complexity. The main aim of this study is to build a general procedure to introduce group equivariant property to SOTA models for 3D point clouds. The group equivariant models built form our procedure are simple to implement, less complexity in comparison with the existing ones, and they preserve the strengths of the original SOTA backbone. From the results of the experiments on object classification, it is shown that our methods are superior to other group equivariant models in performance and complexity. Moreover, our method also helps to improve the mIoU of semantic segmentation models. Overall, by using a combination of only-finite-rotation equivariance and augmentation, our models can outperform existing full $SO(3)$-equivariance models with much cheaper complexity and GPU memory. The proposed procedure is general and forms a fundamental approach to group equivariant neural networks. We believe that it can be easily adapted to other SOTA models in the future.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.