Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 May 2022]
Title:Cross-Domain Correlation Distillation for Unsupervised Domain Adaptation in Nighttime Semantic Segmentation
View PDFAbstract:The performance of nighttime semantic segmentation is restricted by the poor illumination and a lack of pixel-wise annotation, which severely limit its application in autonomous driving. Existing works, e.g., using the twilight as the intermediate target domain to perform the adaptation from daytime to nighttime, may fail to cope with the inherent difference between datasets caused by the camera equipment and the urban style. Faced with these two types of domain shifts, i.e., the illumination and the inherent difference of the datasets, we propose a novel domain adaptation framework via cross-domain correlation distillation, called CCDistill. The invariance of illumination or inherent difference between two images is fully explored so as to make up for the lack of labels for nighttime images. Specifically, we extract the content and style knowledge contained in features, calculate the degree of inherent or illumination difference between two images. The domain adaptation is achieved using the invariance of the same kind of difference. Extensive experiments on Dark Zurich and ACDC demonstrate that CCDistill achieves the state-of-the-art performance for nighttime semantic segmentation. Notably, our method is a one-stage domain adaptation network which can avoid affecting the inference time. Our implementation is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.