Computer Science > Human-Computer Interaction
[Submitted on 2 May 2022 (v1), last revised 3 May 2022 (this version, v2)]
Title:Multi-dimensional parameter-space partitioning of spatio-temporal simulation ensembles
View PDFAbstract:Numerical simulations are commonly used to understand the parameter dependence of given spatio-temporal phenomena. Sampling a multi-dimensional parameter space and running the respective simulations leads to an ensemble of a large number of spatio-temporal simulation runs. A main objective for analyzing the ensemble is to partition (or segment) the multi-dimensional parameter space into connected regions of simulation runs with similar behavior. To facilitate such an analysis, we propose a novel visualization method for multi-dimensional parameter-space partitions. Our visualization is based on the concept of a hyper-slicer, which allows for undistorted views of the parameter-space segments' extent and transitions. For navigation within the parameter space, interactions with a 2D embedding of the parameter-space samples, including their segment memberships, are supported. Parameter-space partitions are generated in a semi-automatic fashion by analyzing the similarity space of the ensemble's simulation runs. Clusters of similar simulation runs induce the segments of the parameter-space partition. We link the parameter-space partitioning visualizations to similarity-space visualizations of the ensemble's simulation runs and embed them into an interactive visual analysis tool that supports the analysis of all facets of the spatio-temporal simulation ensemble targeted at the overarching goal of analyzing the parameter-space partitioning. The partitioning can then be visually analyzed and interactively refined. We evaluated our approach with experts within case studies from three different domains.
Submission history
From: Marina Evers [view email][v1] Mon, 2 May 2022 15:28:30 UTC (44,281 KB)
[v2] Tue, 3 May 2022 15:19:36 UTC (43,244 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.