Computer Science > Machine Learning
[Submitted on 6 May 2022]
Title:Green Accelerated Hoeffding Tree
View PDFAbstract:State-of-the-art machine learning solutions mainly focus on creating highly accurate models without constraints on hardware resources. Stream mining algorithms are designed to run on resource-constrained devices, thus a focus on low power and energy and memory-efficient is essential. The Hoeffding tree algorithm is able to create energy-efficient models, but at the cost of less accurate trees in comparison to their ensembles counterpart. Ensembles of Hoeffding trees, on the other hand, create a highly accurate forest of trees but consume five times more energy on average. An extension that tried to obtain similar results to ensembles of Hoeffding trees was the Extremely Fast Decision Tree (EFDT). This paper presents the Green Accelerated Hoeffding Tree (GAHT) algorithm, an extension of the EFDT algorithm with a lower energy and memory footprint and the same (or higher for some datasets) accuracy levels. GAHT grows the tree setting individual splitting criteria for each node, based on the distribution of the number of instances over each particular leaf. The results show that GAHT is able to achieve the same competitive accuracy results compared to EFDT and ensembles of Hoeffding trees while reducing the energy consumption up to 70%.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.