Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 10 May 2022 (v1), last revised 13 Aug 2022 (this version, v3)]
Title:An Edge-Cloud Integrated Framework for Flexible and Dynamic Stream Analytics
View PDFAbstract:With the popularity of Internet of Things (IoT), edge computing and cloud computing, more and more stream analytics applications are being developed including real-time trend prediction and object detection on top of IoT sensing data. One popular type of stream analytics is the recurrent neural network (RNN) deep learning model based time series or sequence data prediction and forecasting. Different from traditional analytics that assumes data are available ahead of time and will not change, stream analytics deals with data that are being generated continuously and data trend/distribution could change (a.k.a. concept drift), which will cause prediction/forecasting accuracy to drop over time. One other challenge is to find the best resource provisioning for stream analytics to achieve good overall latency. In this paper, we study how to best leverage edge and cloud resources to achieve better accuracy and latency for stream analytics using a type of RNN model called long short-term memory (LSTM). We propose a novel edge-cloud integrated framework for hybrid stream analytics that supports low latency inference on the edge and high capacity training on the cloud. To achieve flexible deployment, we study different approaches of deploying our hybrid learning framework including edge-centric, cloud-centric and edge-cloud integrated. Further, our hybrid learning framework can dynamically combine inference results from an LSTM model pre-trained based on historical data and another LSTM model re-trained periodically based on the most recent data. Using real-world and simulated stream datasets, our experiments show the proposed edge-cloud deployment is the best among all three deployment types in terms of latency. For accuracy, the experiments show our dynamic learning approach performs the best among all learning approaches for all three concept drift scenarios.
Submission history
From: Xin Wang [view email][v1] Tue, 10 May 2022 01:56:16 UTC (3,815 KB)
[v2] Wed, 11 May 2022 21:27:03 UTC (1,234 KB)
[v3] Sat, 13 Aug 2022 13:21:26 UTC (3,603 KB)
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.