Computer Science > Artificial Intelligence
[Submitted on 10 May 2022]
Title:A Quantitative Symbolic Approach to Individual Human Reasoning
View PDFAbstract:Cognitive theories for reasoning are about understanding how humans come to conclusions from a set of premises. Starting from hypothetical thoughts, we are interested which are the implications behind basic everyday language and how do we reason with them. A widely studied topic is whether cognitive theories can account for typical reasoning tasks and be confirmed by own empirical experiments. This paper takes a different view and we do not propose a theory, but instead take findings from the literature and show how these, formalized as cognitive principles within a logical framework, can establish a quantitative notion of reasoning, which we call plausibility. For this purpose, we employ techniques from non-monotonic reasoning and computer science, namely, a solving paradigm called answer set programming (ASP). Finally, we can fruitfully use plausibility reasoning in ASP to test the effects of an existing experiment and explain different majority responses.
Submission history
From: Emmanuelle-Anna Dietz [view email][v1] Tue, 10 May 2022 16:43:47 UTC (26 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.