Computer Science > Machine Learning
[Submitted on 11 May 2022 (v1), last revised 5 Oct 2023 (this version, v2)]
Title:Spatial-temporal associations representation and application for process monitoring using graph convolution neural network
View PDFAbstract:Thank you very much for the attention and concern of colleagues and scholars in this work. With the comments and guidance of experts, editors, and reviewers, this work has been accepted for publishing in the journal "Process Safety and Environmental Protection". The theme of this paper relies on the Spatial-temporal associations of numerous variables in the same industrial processes, which refers to numerous variables obtained in dynamic industrial processes with Spatial-temporal correlation characteristics, i.e., these variables are not only highly correlated in time but also interrelated in space. To handle this problem, three key issues need to be well addressed: variable characteristics modeling and representation, graph network construction (temporal information), and graph characteristics perception. The first issue is implemented by assuming the data follows one improved Gaussian distribution, while the graph network can be defined by the monitoring variables and their edges which are calculated by their characteristics in time. Finally, these networks corresponding to process states at different times are fed into a graph convolutional neural network to implement graph classification to achieve process monitoring. A benchmark experiment (Tennessee Eastman chemical process) and one application study (cobalt purification from zinc solution) are employed to demonstrate the feasibility and applicability of this paper.
Submission history
From: Hao Ren [view email][v1] Wed, 11 May 2022 03:36:35 UTC (4,200 KB)
[v2] Thu, 5 Oct 2023 14:32:15 UTC (8 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.