Computer Science > Machine Learning
[Submitted on 12 May 2022 (v1), last revised 20 Apr 2024 (this version, v3)]
Title:ELODI: Ensemble Logit Difference Inhibition for Positive-Congruent Training
View PDFAbstract:Negative flips are errors introduced in a classification system when a legacy model is updated. Existing methods to reduce the negative flip rate (NFR) either do so at the expense of overall accuracy by forcing a new model to imitate the old models, or use ensembles, which multiply inference cost prohibitively. We analyze the role of ensembles in reducing NFR and observe that they remove negative flips that are typically not close to the decision boundary, but often exhibit large deviations in the distance among their logits. Based on the observation, we present a method, called Ensemble Logit Difference Inhibition (ELODI), to train a classification system that achieves paragon performance in both error rate and NFR, at the inference cost of a single model. The method distills a homogeneous ensemble to a single student model which is used to update the classification system. ELODI also introduces a generalized distillation objective, Logit Difference Inhibition (LDI), which only penalizes the logit difference of a subset of classes with the highest logit values. On multiple image classification benchmarks, model updates with ELODI demonstrate superior accuracy retention and NFR reduction.
Submission history
From: Yue Zhao [view email][v1] Thu, 12 May 2022 17:59:56 UTC (1,235 KB)
[v2] Fri, 13 May 2022 19:12:27 UTC (1,235 KB)
[v3] Sat, 20 Apr 2024 23:40:53 UTC (1,479 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.