Computer Science > Cryptography and Security
[Submitted on 13 May 2022]
Title:Impala: Low-Latency, Communication-Efficient Private Deep Learning Inference
View PDFAbstract:This paper proposes Impala, a new cryptographic protocol for private inference in the client-cloud setting. Impala builds upon recent solutions that combine the complementary strengths of homomorphic encryption (HE) and secure multi-party computation (MPC). A series of protocol optimizations are developed to reduce both communication and performance bottlenecks. First, we remove MPC's overwhelmingly high communication cost from the client by introducing a proxy server and developing a low-overhead key switching technique. Key switching reduces the clients bandwidth by multiple orders of magnitude, however the communication between the proxy and cloud is still excessive. Second, to we develop an optimized garbled circuit that leverages truncated secret shares for faster evaluation and less proxy-cloud communication. Finally, we propose sparse HE convolution to reduce the computational bottleneck of using HE. Compared to the state-of-the-art, these optimizations provide a bandwidth savings of over 3X and speedup of 4X for private deep learning inference.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.