Mathematics > Numerical Analysis
[Submitted on 17 May 2022]
Title:Semi-discretization and full-discretization with optimal accuracy for charged-particle dynamics in a strong nonuniform magnetic field
View PDFAbstract:The aim of this paper is to formulate and analyze numerical discretizations of charged-particle dynamics (CPD) in a strong nonuniform magnetic field. A strategy is firstly performed for the two dimensional CPD to construct the semi-discretization and full-discretization which have optimal accuracy. This accuracy is improved in the position and in the velocity when the strength of the magnetic field becomes stronger. This is a better feature than the usual so called "uniformly accurate methods". To obtain this refined accuracy, some reformulations of the problem and two-scale exponential integrators are incorporated, and the optimal accuracy is derived from this new procedure. Then based on the strategy given for the two dimensional case, a new class of uniformly accurate methods with simple scheme is formulated for the three dimensional CPD in maximal ordering case. All the theoretical results of the accuracy are numerically illustrated by some numerical tests.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.